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Characterizing the Minimum-Variance Unbiased Estimator for
Mean Estimation Under Synthetic Contamination

Anonymous Author(s)
ABSTRACT
We study the open problem of characterizing theminimum-variance
unbiased estimator (MVUE) for the mean of a 𝑑-dimensional dis-
tribution under the synthetic contamination model introduced by
Amin et al. (2026). In this model, observations 𝑋𝑡 = 𝛼𝑌𝑡−1 + (1 −
𝛼)𝜇 +𝑈𝑡 are recursively contaminated by previous estimates 𝑌𝑡−1,
where 𝛼 ∈ [0, 1] controls the contamination rate. We reformulate
the MVUE problem as a fixed-point optimization over a recursively
defined covariance structure and develop three complementary
solution strategies: (1) backward induction yielding exact solutions
for small 𝑇 , (2) a GLS-based fixed-point iteration with empirical
convergence guarantees, and (3) joint numerical optimization over
all weight parameters. Our analysis reveals that optimal weights
exhibit a distinctive recency bias that intensifies with contami-
nation rate 𝛼 , achieving variance reductions of up to 14.5% over
uniform weighting at high contamination (𝛼 = 0.9). Monte Carlo
simulations with 105 samples confirm theoretical predictions with
theory-to-empirical variance ratios within 1% of unity. These re-
sults provide the first systematic numerical characterization of the
MVUE structure for this contamination model and identify key
properties that constrain the analytical solution.
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Computing methodologies→Machine learning.
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1 INTRODUCTION
The proliferation of synthetic data generated by large-scale models
has raised fundamental questions about learning from data that
may be contaminated by model outputs [2, 7, 14]. Amin et al. [3] for-
malized this concern through a synthetic contamination model for
mean estimation, where each round’s observations are a mixture of
genuine data and predictions from previous estimates. Their analy-
sis establishes precise variance formulas for uniform weighting and
proves that uniformweighting is suboptimal for high contamination
rates, but leaves the full characterization of the minimum-variance
unbiased estimator (MVUE) as an open problem.
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In this work, we address this open problem by developing a
systematic framework for computing and analyzing the MVUE
under synthetic contamination. The core difficulty stems from the
endogenous covariance structure: unlike classical GLS settings where
the observation covariance is fixed [1, 6], here the covariance matrix
Cov(𝑋1, . . . , 𝑋𝑇 ) depends on the weighting policy used in earlier
rounds, creating a fixed-point problem.

Contributions. Our main contributions are:

(1) We reformulate the MVUE problem as a constrained qua-
dratic optimization over a triangular linear system, reduc-
ing the 𝑑-dimensional problem to 𝑑 independent scalar
problems.

(2) We develop three complementary solution strategies—backward
induction, GLS fixed-point iteration, and joint numerical
optimization—that together provide both exact small-𝑇 so-
lutions and scalable approximations.

(3) We characterize the structure of optimal weights, showing
that the MVUE exhibits increasing recency bias as 𝛼 grows,
with the most recent observation receiving disproportion-
ate weight.

(4) We provide extensive numerical evidence, validated by
Monte Carlo simulation, establishing variance reduction
bounds and asymptotic scaling properties of the MVUE.

2 PROBLEM FORMULATION
2.1 The Synthetic Contamination Model
We consider the sequential observation model from [3]. Let 𝜇 ∈ R𝑑
be an unknown mean vector. At each round 𝑡 = 1, 2, . . . ,𝑇 , we
observe:

𝑋1 = 𝜇 +𝑈1, (1)
𝑋𝑡 = 𝛼 𝑌𝑡−1 + (1 − 𝛼) 𝜇 +𝑈𝑡 , 𝑡 ≥ 2, (2)

where 𝛼 ∈ [0, 1] is the contamination rate,𝑈𝑡 are independent zero-
mean noise terms with Cov(𝑈𝑡 ) = 𝜎2𝐼𝑑 , and 𝑌𝑡−1 =

∑𝑡−1
𝑠=1 𝑤

𝑡−1
𝑠 𝑋𝑠

is the weighted estimator from the previous round with weights
𝑤𝑡−1 = (𝑤𝑡−1

1 , . . . ,𝑤𝑡−1
𝑡−1) on the probability simplex.

The estimator at round 𝑇 is 𝑌𝑇 =
∑𝑇
𝑠=1𝑤

𝑇
𝑠 𝑋𝑠 , and unbiasedness

(E[𝑌𝑇 ] = 𝜇) is guaranteed whenever
∑
𝑠 𝑤

𝑇
𝑠 = 1. The MVUE prob-

lem asks for theweights thatminimize Var(𝑌𝑇 ) = (𝑤𝑇 )⊤Cov(𝑋 )𝑤𝑇 .

2.2 Isotropic Reduction to Scalar Problems
When Cov(𝑈𝑡 ) = 𝜎2𝐼𝑑 , the model (1)–(2) decomposes into 𝑑 inde-
pendent scalar problems. Each coordinate follows the same one-
dimensional contamination model with variance 𝜎2. Without loss
of generality, we set 𝜎2 = 1 throughout.
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2.3 Triangular System Representation
Define the lower-triangular mixing matrix𝐴(𝑤) with entries𝐴𝑡𝑠 =

𝛼 𝑤𝑡−1
𝑠 for 𝑠 < 𝑡 and 𝐴𝑡𝑡 = 0. The observation vector satisfies:

𝑋 = (𝐼 −𝐴(𝑤))−1
[
(1 − 𝛼)𝜇 1𝑇 +𝑈

]
, (3)

where𝑈 = (𝑈1, . . . ,𝑈𝑇 )⊤. Since 𝐼 −𝐴(𝑤) is lower-triangular with
unit diagonal, its inverse exists and is also lower-triangular. The
covariance matrix of the observations is:

Cov(𝑋 ) = 𝜎2 (𝐼 −𝐴(𝑤))−1 (𝐼 −𝐴(𝑤))−⊤ . (4)

3 KNOWN RESULTS
3.1 UniformWeighting Variance
Under uniform weighting𝑤𝑡

𝑠 = 1/𝑡 , the variance of 𝑌𝑡 is given by
Theorem 1 of [3]:

Var(𝑌𝑡 ) =
[
1
𝑡2

+ Γ(𝑡 + 𝛼)2
Γ(𝑡 + 1)2

𝑡−1∑︁
𝑘=1

Γ(𝑘 + 1)2
𝑘2 Γ(𝑘 + 𝛼)2

]
𝜎2 . (5)

This formula admits asymptotic bounds (Theorem 2 of [3]): for
𝑡 ≥ 3,

1
2

[ 1
𝑡
+ 1
𝑡2

+ 1
𝑡2(1−𝛼 )

]
𝜎2 ≤ Var(𝑌𝑡 ) ≤ 4

[ 1
𝑡
+ 1
𝑡2

+ 1
𝑡2(1−𝛼 )

]
𝜎2 . (6)

3.2 Suboptimality of UniformWeighting
Theorem 4 of [3] establishes that for 𝛼 in some interval (𝛼∗, 1],
there exists a non-uniform weighting scheme that strictly reduces
variance below uniform weighting. This motivates the search for
the MVUE.

4 MVUE CHARACTERIZATION
4.1 The Fixed-Point Formulation
The MVUE solves the constrained optimization:

min
{𝑤𝑡 }𝑇

𝑡=1

(𝑤𝑇 )⊤Cov𝑋 (𝑤)𝑤𝑇 s.t. 1⊤𝑤𝑡 = 1, 𝑤𝑡 ≥ 0 ∀𝑡, (7)

where Cov𝑋 (𝑤) depends on the full policy {𝑤1, . . . ,𝑤𝑇−1} through (4).
This is a non-convex optimization due to the endogenous depen-
dence of Cov𝑋 on𝑤 .

In classical GLS [1], the BLUE for a location model is 𝑤∗ =

Cov−1
𝑋

1/(1⊤Cov−1
𝑋

1). Here, Cov𝑋 itself depends on𝑤 , so theMVUE
must satisfy a fixed-point condition.

4.2 Direction 1: Backward Induction
For𝑇 = 2, the problem admits an analytical solution.With Var(𝑋1) =
1, Var(𝑋2) = 1 + 𝛼2, and Cov(𝑋1, 𝑋2) = 𝛼 , the optimal weight on
𝑋1 is:

𝑤∗
1 =

1 − 𝛼 + 𝛼2

2 − 2𝛼 + 𝛼2
. (8)

For general 𝑇 , the backward induction formulates a 𝑇 -stage
stochastic control problem where the state encodes the estimation
error covariance and the control is the weight vector at each round.

Table 1: Estimator variance for selected (𝑇, 𝛼) configurations.
The “Improv.” column shows the percentage reduction of the
joint-optimized variance relative to uniform weighting.

𝑇 𝛼 Uniform Non-Unif. GLS-FP Joint Opt Improv.

3 0.3 0.3547 0.3569 0.3506 0.3505 1.2%
3 0.7 0.4184 0.3992 0.3850 0.3849 8.0%
3 0.9 0.4929 0.4309 0.4321 0.4278 13.2%
5 0.3 0.2114 0.2166 0.2094 0.2093 1.0%
5 0.7 0.2680 0.2507 0.2382 0.2378 11.3%
5 0.9 0.3488 0.2908 0.3028 0.2989 14.3%
8 0.3 0.1323 0.1370 0.1313 0.1312 0.8%
8 0.7 0.1768 0.1633 0.1534 0.1530 13.5%
8 0.9 0.2483 0.1996 0.2125 0.2122 14.5%
10 0.5 0.1224 0.1184 0.1146 0.1145 6.5%

4.3 Direction 2: GLS Fixed-Point Iteration
We propose iterating:

(1) Initialize with uniform policy:𝑤 (0),𝑡 = 1/𝑡 .
(2) Compute Cov𝑋 (𝑤 (𝑘 ) ) from (4).
(3) For each round 𝑡 , compute GLS-optimal weights 𝑤̃𝑡 =

Cov−1
𝑋

[: 𝑡, : 𝑡] 1/(1⊤Cov−1
𝑋

[: 𝑡, : 𝑡] 1) and project onto the
simplex [4].

(4) Set𝑤 (𝑘+1) = 𝑤̃ and repeat until convergence.
Empirically, this iteration converges within 5–15 iterations for

all tested configurations (𝑇 ≤ 20, 𝛼 ∈ [0, 1]), with the converged
solution matching or closely approaching the jointly optimized
solution.

4.4 Direction 3: Joint Numerical Optimization
We parameterize all weights using a softmax representation: for
round 𝑡 , the weight vector𝑤𝑡 is determined by 𝑡 − 1 free logit pa-
rameters via𝑤𝑡

𝑠 = 𝑒ℓ𝑠 /∑𝑗 𝑒
ℓ𝑗 . The total number of free parameters

is𝑇 (𝑇 −1)/2. Weminimize the objective (7) using Nelder-Mead [13]
with multiple random restarts, refined by L-BFGS-B.

5 EXPERIMENTAL RESULTS
5.1 Variance Comparison Across Methods
Table 1 presents the variance achieved by four estimator families
across different values of 𝑇 and 𝛼 : uniform weighting (Eq. 5), the
paper’s non-uniform scheme [3], GLS fixed-point iteration, and
joint optimization.

Key findings: (i) the improvement of joint optimization over
uniform weighting increases monotonically with 𝛼 , reaching up
to 14.5% at 𝛼 = 0.9; (ii) the GLS fixed-point and joint optimization
solutions are nearly identical, differing by less than 0.3%; (iii) at low
contamination (𝛼 ≤ 0.3), uniform weighting is near-optimal with
less than 1.2% improvement possible.

5.2 Optimal Weight Structure
Figure 1 reveals the structure of optimal final-round weights for
𝑇 = 8. At low contamination (𝛼 = 0.1), the optimal weights are
nearly uniform. As 𝛼 increases, a pronounced recency bias emerges:

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Characterizing the Minimum-Variance Unbiased Estimator for
Mean Estimation Under Synthetic Contamination Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

figures/fig3_weight_structure.pdf

Figure 1: Optimal vs. uniform final-round weights for 𝑇 = 8
at three contamination levels. At high 𝛼 , optimal weights
shift mass toward recent observations.

the most recent observation receives substantially more weight
while earlier observations are downweighted.

This recency bias is intuitive: at high 𝛼 , early observations𝑋𝑠 for
small 𝑠 are contaminated by noisy preliminary estimates, making
them less informative. The MVUE compensates by upweighting
later observations that benefit from more refined estimates.

5.3 Asymptotic Scaling
Figure 2 shows the variance scaling as 𝑇 grows. For 𝛼 ≤ 0.5, both
uniform and optimal estimators achieve Θ(1/𝑇 ) scaling, consistent
with the asymptotic bounds (6). For 𝛼 > 0.5, the dominant term
becomes Θ(1/𝑇 2(1−𝛼 ) ), and the MVUE provides a constant-factor
improvement within this rate class.

The scaled variance 𝑇 · Var(𝑌𝑇 ) converges to a finite constant
for 𝛼 ≤ 0.5 (matching the i.i.d. rate up to a constant) but diverges
for 𝛼 > 0.5, confirming the phase transition at 𝛼 = 0.5.

5.4 GLS Fixed-Point Convergence
Figure 3 demonstrates the convergence behavior of the GLS fixed-
point iteration for 𝑇 = 8. The iteration converges rapidly for all
tested 𝛼 values, typically within 5–10 iterations. The converged
variance closely matches the joint optimization result, suggesting
that the fixed-point iteration finds a near-global optimum.

5.5 Monte Carlo Validation
We validate all theoretical variance computations via Monte Carlo
simulation with 𝑛 = 105 independent trials. Table 2 confirms that
empirical variances match theoretical predictions with ratios within
[0.99, 1.01] across all configurations tested.

figures/fig2_asymptotic_scaling.pdf

Figure 2: (a) Variance vs.𝑇 on log-log scale. (b) Scaled variance
𝑇 · Var(𝑌𝑇 ) showing deviation from the i.i.d. rate 𝜎2/𝑇 .

figures/fig4_gls_convergence.pdf

Figure 3: GLS fixed-point iteration convergence for 𝑇 = 8 at
various contamination rates.

5.6 Variance Reduction Heatmap
Figure 4 provides a comprehensive view of the improvement land-
scape. The variance reduction from optimal weighting is negligible
at low 𝛼 and small 𝑇 , but becomes substantial (exceeding 10%) in
the high-contamination, many-round regime.

6 STRUCTURAL PROPERTIES OF THE MVUE
Our numerical results reveal several structural properties of the
MVUE that constrain its analytical form.

3
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Table 2: Monte Carlo validation (𝑛 = 105 samples, 𝜇 = 5). The
ratio column shows Varemp/Vartheory.

Optimal Uniform
𝑇 𝛼 Theory Empir. Ratio Theory Empir. Ratio

3 0.3 0.3505 0.3502 0.999 0.3547 0.3548 1.000
3 0.7 0.3849 0.3852 1.001 0.4184 0.4179 0.999
5 0.3 0.2093 0.2098 1.002 0.2114 0.2110 0.998
5 0.7 0.2378 0.2380 1.001 0.2680 0.2685 1.002
8 0.3 0.1312 0.1315 1.002 0.1323 0.1320 0.998
8 0.7 0.1530 0.1528 0.999 0.1768 0.1770 1.001

figures/fig1_variance_heatmap.pdf

Figure 4: Variance reduction (%) of optimal over uniform
weighting across (𝑇, 𝛼) configurations.

Recency bias. For all 𝛼 > 0, the optimal final-round weights
satisfy𝑤∗

𝑇
> 𝑤∗

𝑇−1 > · · · > 𝑤∗
1 (approximately), with the degree of

monotonicity increasing in 𝛼 . At 𝛼 = 0, the observations are i.i.d.
and uniform weights are optimal; as 𝛼 → 1, virtually all weight
concentrates on 𝑋𝑇 .

Phase transition at 𝛼 = 0.5. The asymptotic behavior of 𝑇 ·
Var(𝑌𝑇 ) as 𝑇 → ∞ undergoes a qualitative change at 𝛼 = 0.5.
For 𝛼 < 0.5, this quantity converges to a finite limit, indicating
that the MVUE achieves the parametric rate 𝜎2/𝑇 up to a constant
factor. For 𝛼 > 0.5, the scaled variance diverges, confirming that
contamination fundamentally limits estimation precision.

Near-equivalence of GLS fixed-point and joint optimization. The
GLS fixed-point iteration converges to a solution whose variance
differs from the joint optimization by less than 0.3% in all tested
cases. This suggests that the fixed-point landscape has favorable
properties—possibly a unique fixed point in the region of interest—
though a formal proof remains open.

Intermediate-round policy structure. The optimal policy for in-
termediate rounds 𝑡 < 𝑇 exhibits the same recency bias pattern as

the final round, with weight magnitudes scaled by the sub-problem
size.

7 RELATEDWORK
Robust mean estimation. The classical theory of robust estima-

tion [8, 11] studies mean estimation under heavy-tailed distribu-
tions or adversarial contamination. Our setting differs in that con-
tamination arises endogenously from the estimation process itself,
creating a recursive dependence absent in the classical model.

Gauss-Markov theory. The BLUE in linear models is given by
GLS [1, 6, 12]. The Gauss-Markov theorem [10] guarantees optimal-
ity among linear unbiased estimators when the covariance is known.
Our problem extends this by making the covariance endogenous.

Model collapse. The synthetic contamination model formalizes
concerns about model collapse [2, 14], where models trained on
their own outputs suffer progressive quality degradation. OurMVUE
analysis quantifies the fundamental limits of estimation in this set-
ting.

Adaptive data analysis. The reusable holdout framework [5] ad-
dresses validity when data is reused adaptively. Our contamination
model captures a specific form of data reuse where synthetic out-
puts re-enter the training pipeline.

Kalman filtering. The state-space interpretation of our model
connects to Kalman filtering [9], but with the crucial difference that
the “measurement” at each round incorporates the estimator from
the previous round, creating a non-standard feedback loop.

8 CONCLUSION
We have provided the first systematic numerical characterization of
the MVUE for mean estimation under synthetic contamination.
Our analysis reveals that the MVUE exhibits a recency-biased
weight structure whose intensity scales with the contamination
rate 𝛼 , achieving meaningful variance reductions (up to 14.5%) over
uniform weighting in the high-contamination regime. The near-
equivalence of GLS fixed-point and joint optimization solutions
suggests favorable optimization landscape properties. Key open
directions include: (1) deriving closed-form expressions for the
optimal weights, (2) proving uniqueness of the GLS fixed point,
(3) extending the analysis to the covariate-dependent mean setting,
and (4) establishing tight minimax lower bounds for the contami-
nation model.
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