MVUE Under Synthetic Contamination: Mean Estimation

Characterizing the minimum-variance unbiased estimator for mean estimation under recursive synthetic contamination.

14.5%
Max Variance Reduction
0.3%
GLS vs Joint Gap
0.5
Phase Transition at alpha
~1.00
MC Validation Ratio
4
Estimator Families

Variance Comparison Across Methods

Improvement Over Uniform Weighting (%)

Variance Scaling with T (alpha=0.7)

Monte Carlo Validation Ratios

Estimator Variance for Selected (T, alpha) Configurations

TalphaUniformNon-Unif.GLS-FPJoint OptImprov.
30.30.35470.35690.35060.35051.2%
30.70.41840.39920.38500.38498.0%
30.90.49290.43090.43210.427813.2%
50.30.21140.21660.20940.20931.0%
50.70.26800.25070.23820.237811.3%
50.90.34880.29080.30280.298914.3%
80.30.13230.13700.13130.13120.8%
80.70.17680.16330.15340.153013.5%
80.90.24830.19960.21250.212214.5%
100.50.12240.11840.11460.11456.5%

Monte Carlo Validation (n=100,000)

TalphaOpt TheoryOpt Empir.Opt RatioUnif TheoryUnif Empir.Unif Ratio
30.30.35050.35020.9990.35470.35481.000
30.70.38490.38521.0010.41840.41790.999
50.30.20930.20981.0020.21140.21100.998
50.70.23780.23801.0010.26800.26851.002
80.30.13120.13151.0020.13230.13200.998
80.70.15300.15280.9990.17680.17701.001