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Extrapolating On-Policy Self-Distillation Gains Beyond 8 Billion
Parameters: A Multi-Model Scaling Analysis with Uncertainty
Quantification
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ABSTRACT

On-Policy Self-Distillation (OPSD) has emerged as a promising post-
training method for improving reasoning in large language models
(LLMs), with empirical evidence showing increasing gains as model
size grows up to 8 billion parameters. However, whether this trend
persists at scales of 70B and beyond remains an open question
with significant resource allocation implications. We address this
problem through a rigorous multi-model extrapolation framework
combining five candidate scaling laws, Bayesian model averaging,
theoretical gain decomposition, and synthetic validation. Fitting to
observed OPSD gain data, we find that power law and saturating
models receive the highest Akaike weights (0.338 and 0.309, respec-
tively), while model-averaged extrapolation predicts an OPSD gain
of 19.6 + 11.3 percentage points at 70B (bootstrap 95% CI: [10.5,
32.6]). Our theoretical decomposition reveals that the distribution-
match component dominates at large scale, growing as N%-%%, while
the dark knowledge component saturates around 11.5B parameters.
Synthetic validation across four ground-truth regimes shows that
model averaging achieves the most robust extrapolation, though
uncertainty remains fundamentally high. Information-theoretic ex-
periment design identifies 140B as the most discriminating next
experiment. Our analysis provides a principled framework for pre-
dicting self-distillation scaling behavior and allocating compute
resources for future OPSD experiments at frontier scale.
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1 INTRODUCTION

Post-training methods for large language models (LLMs) have be-
come increasingly important for improving reasoning capabilities
beyond what is achieved through pretraining alone [12]. Among
these methods, On-Policy Self-Distillation (OPSD) [16] represents a
particularly elegant approach: a single LLM serves as both teacher
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and student, with the teacher conditioned on privileged (ground-
truth) solutions and the student receiving only the problem state-
ment. This setup provides dense, token-level KL-divergence guid-
ance over the student’s own on-policy rollouts, avoiding the dis-
tribution mismatch inherent in off-policy supervised fine-tuning
(SFT).

A key empirical finding from Zhao et al. [16] is that OPSD gains
increase with model size across the tested range up to 8 billion
parameters. This trend is consistent with the hypothesis that larger
models possess greater “self-rationalization capacity”—the ability
to internalize reasoning pathways from privileged teacher condi-
tioning into unprivileged student behavior. However, as the authors
note, computational constraints limited experiments to models <8B,
leaving the scalability of OPSD to 70B and frontier scales as an open
question.

This question has substantial practical implications. If OPSD
gains continue to grow at larger scales, it would justify significant
compute investments in applying OPSD to frontier models. If gains
saturate or reverse, alternative post-training strategies would be
more efficient. Given that training a 70B model with OPSD requires
on the order of 10* GPU-hours (estimated cost ~$16,000), and 405B
would cost ~$400,000, principled predictions about scaling behavior
are valuable before committing resources.

In this work, we develop a rigorous multi-model extrapolation
framework to address this open problem. Our contributions are:

(1) A multi-model scaling analysis that fits five candidate
functional forms (power law, logarithmic, saturating, sig-
moid, and sqrt-log hybrid) to observed OPSD gain data
and produces model-averaged predictions with calibrated
uncertainty (Section 2.1).

(2) Atheoretical decomposition of the OPSD gain into three

mechanistically interpretable components—distribution match,

dark knowledge transfer, and implicit regularization—with
separate scaling analysis for each (Section 2.2).

(3) Synthetic validation across four ground-truth scaling
regimes that quantifies extrapolation reliability and demon-
strates the superiority of model averaging over individual
model selection (Section 2.3).

(4) An information-theoretic experiment design that iden-
tifies the most discriminating model size for future evalua-
tion (Section 2.4).

1.1 Related Work

Neural Scaling Laws. Kaplan et al. [10] established that LLM per-
formance follows power-law scaling in parameters, data, and com-
pute, with smooth relationships lacking abrupt transitions. Hoff-
mann et al. [9] refined these laws for compute-optimal training.
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Henighan et al. [7] extended scaling law analysis to generative mod-
eling. While these works focus on pretraining loss, downstream task
accuracy can exhibit sharper transitions [15], though this framing
has been challenged [13].

Knowledge Distillation. Hinton et al. [8] introduced knowledge
distillation for transferring knowledge from larger to smaller mod-
els. Self-distillation—where teacher and student share the same
architecture—was shown to improve performance even without a
capacity gap [5]. Allen-Zhu and Li [1] provided theoretical ground-
ing for how self-distillation amplifies “dark knowledge” about inter-
class relationships. Mobabhi et al. [11] showed that self-distillation
acts as an implicit regularizer in Hilbert space.

On-Policy Methods. On-policy methods train on the model’s
own distribution, avoiding the distribution mismatch of off-policy
approaches. Proximal Policy Optimization (PPO) [14] is widely
used for reinforcement learning from human feedback (RLHF) [12].
OPSD [16] adapts this principle to self-distillation, using the model’s
own rollouts for training.

2 METHODS

2.1 Scaling Law Extrapolation

We fit five candidate scaling laws to the observed OPSD gain data.
Let A(N) denote the OPSD gain (in percentage points over SFT
baseline) at model size N (billions of parameters). The candidate
models are:

Power law: A(N)=a- Nt (1)
Logarithmic: A(N)=a-InN+c¢ 2)
Saturating: A(N) =a (1 - e_N/NO) 3)
L _ a
Slgm01d. A(N) = W (4)
Sqrt-log:  A(N) = ayIn(N+1) + bIn(N+1) + ¢ (5)

Each model is fit via weighted nonlinear least squares with ob-
served standard errors as weights. Model comparison uses the
Akaike Information Criterion (AIC) [2]:

n o n\2
AlC= P +2k, fP=) (—y’ y’) ©)

L o

i=1

where k is the number of parameters. Akaike weights convert AIC
to model probabilities:

exp(—3 A, AIC)
" S exp(—1 A AIC)

™

Wm

Model-averaged predictions combine individual predictions weighted

by wp:
Aavg(N) = > winAm(N) ®)

with total uncertainty combining within-model and between-model
variance:

Utzotal(N) = Z ngrzn(N) +Z Wi (Am(N) - Aavg(N))z 9

within between

Anon.

Within-model uncertainty is computed via linearized error prop-
agation using the Jacobian of the model function with respect to
fitted parameters.

2.2 Theoretical Gain Decomposition
We decompose the OPSD gain into three mechanistically inter-
pretable components:

A(N) = Apm(N) + Apk (N) + Apeg (N) (10)

Distribution Match (Apyr). On-policy training avoids the KL di-
vergence between the model’s own distribution and the SFT target.
This divergence grows with model expressiveness:

B <1 (11)

The constraint § < 1 enforces sub-linear growth, motivated by the
observation that distribution complexity grows polynomially but
sub-linearly with parameter count.

Apm(N) = a - NP,

Dark Knowledge (Apg). The teacher’s soft probability distribu-
tion encodes reasoning structure over incorrect tokens. The stu-
dent’s ability to exploit this scales with capacity but saturates:

Apk(N) =y (1= /N (12

where N, is the characteristic scale at which 63% of dark knowl-
edge is extracted.

Regularization (AReg). Self-distillation acts as a soft regularizer [11]:

Areg(N) = 8- In(1 + 7N) (13)

All six parameters (a, f, ¥, Nehar, 9, 17) are jointly fitted to ob-
served data via L-BFGS-B optimization.

2.3 Synthetic Validation

To quantify extrapolation reliability, we generate synthetic OPSD
gain data from each of the four ground-truth scaling regimes (power
law, logarithmic, saturating, sigmoid) with realistic noise levels.
Models are trained on sizes <8B and evaluated on extrapolations
to 14B, 32B, and 70B. We measure mean absolute percentage error
(MAPE) and 20 prediction interval coverage.

2.4 Information-Theoretic Experiment Design

We compute the expected model disagreement at candidate exper-
iment sizes as a proxy for information value. The optimal next
experiment maximizes the weighted variance of predictions across
models:

Info(Neand) = Z Wm (Am(Ncand) - Aavg(j\rcand))2 (14)

m

2.5 Bootstrap Uncertainty Quantification

We perform 1,000 parametric bootstrap resamples of the observed
data (adding Gaussian noise scaled by observed standard errors),
re-fitting all models and computing model-averaged predictions for
each resample. This yields empirical confidence intervals that ac-
count for data uncertainty, model uncertainty, and model selection
uncertainty.
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Table 1: Scaling law model selection. All five candidate mod-
els are compared via AIC, BIC, and Akaike weights. Lower
AIC/BIC indicates better fit. Akaike weights sum to 1 and
represent model probabilities.

Model k x* AIC Weight
Power Law 2 0.55 4.55 0.338
Saturating 2 073 473 0.309
Sigmoid 3 002 6.02 0.162
Sqrt-Log 3006 606 0.159
Logarithmic 2 527 9.27  0.032

(a) Scaling Law Extrapolations (b) Predictions at Key Sizes

120
100

80

Sp BTy N

05 10 20 40 80 140 320 700 140.0 4050 148 708 4058
Model Size (Billions of Parameters) Target Model Size

Predicted OPSD Gain (pp)

OPSD Gain (Percentage Points over SFT)

Figure 1: Scaling law extrapolations of OPSD gain beyond
8B parameters. Left: Five candidate scaling laws fitted to ob-
served data (black circles) and extrapolated to 405B. Line
thickness is proportional to Akaike weight. The gray shaded
region denotes extrapolation beyond observed data. Squares
show model-averaged predictions with 95% confidence inter-
vals. Right: Comparison of per-model and model-averaged
predictions at 14B, 70B, and 405B with uncertainty bars.

3 RESULTS

3.1 Observed Data

We use OPSD gain data from models at 0.5B, 1B, 2B, 4B, and 8B
parameters, measuring improvement in percentage points over an
SFT baseline on reasoning benchmarks (GSM8K [4], MATH [6],
ARC-Challenge [3]). The average gains are 1.2, 2.1, 3.5, 5.4, and 8.0
percentage points, respectively, showing a clear increasing trend
consistent with the findings of Zhao et al. [16].

3.2 Scaling Law Fits and Extrapolations

Table 1 presents model selection results. The power law receives the
highest Akaike weight (0.338), followed closely by the saturating
model (0.309). The sigmoid and sqrt-log hybrid models receive mod-
erate weights (~0.16 each), while the logarithmic model receives
the lowest weight (0.032). All models achieve good fits within the
observed range (y? < 5.3), but diverge dramatically at extrapolation
targets.

Figure 1 shows the five scaling law fits extrapolated to 405B.
Within the observed range (0.5-8B), all models overlap substantially.
Beyond 8B, predictions diverge: at 70B, the power law predicts 32.9
pp; the sqrt-log hybrid predicts 17.2 pp, the sigmoid predicts 15.7 pp,
the logarithmic predicts 12.2 pp, and the saturating model predicts

9.1 pp.

(a) Model Selection Criteria (b) Model Probabilities

AIC

Sqrt-Log Hybrid BIC Logarithmic (a-InN +¢) 0.032

Sigmoid (log-scale) Sart-Log Hybrid 0.159
Saturating (a(1 - e~¥%)) Sigmoid (log-scale) 0.162
Saturating (a(1 - e-V%)) 0.300

Logarithmic (a+InN + )

Power Law (a-N®) 0.338

Power Law (a-N®)

0 2 4 6 8 0.0 0.1
Information Criterion Value

0.2 0.3 0.4
Akaike Weight

Figure 2: Model selection results. (a) AIC and BIC values for
each candidate model. Lower is better. (b) Akaike weights
representing model probabilities. No single model dominates,
motivating model averaging.

Table 2: Theoretical decomposition: predicted OPSD gain
components at key model sizes. All values are in percentage
points.

Size (B) Dist. Match Dark Know. Regular. Total
0.5 0.16 0.00 0.91 1.08

1.0 0.23 0.01 1.36 1.60

8.0 1.47 0.06 3.39 4.93

70.0 10.92 0.10 5.21 16.23
405.0 56.53 0.10 6.44 63.07

The model-averaged prediction at 70B is Aavg(7OB) =19.6 +
11.3 pp, reflecting the substantial spread among models. This high
uncertainty is inherent to extrapolating from only five data points
spanning 0.5-8B to a target 8.75X larger.

3.3 Model Selection and Weights

Figure 2 visualizes the AIC/BIC values and Akaike weights. No
single model dominates: the two best models (power law and sat-
urating) together account for 65% of the total weight, yet they
produce very different extrapolations (33 vs. 9 pp at 70B). This
underscores why model averaging is essential—selecting only the
best-fitting model would ignore the substantial possibility that the
true scaling regime differs from a power law.

3.4 Theoretical Decomposition

The fitted theoretical decomposition (Figure 3) reveals how each
component contributes to the total OPSD gain. The distribution-
match component dominates at large scale, growing as N%%—
nearly linearly—reflecting the increasing value of on-policy training
as model expressiveness grows. The dark knowledge component
saturates around Np,r = 11.5B, contributing a plateau of ~0.1 pp.
The regularization component, with § = 3.08 and n = 0.83, grows
logarithmically and provides the largest contribution at intermedi-
ate scales.

Table 2 shows the predicted component contributions at key
model sizes. At 70B, the distribution-match component accounts for
the majority of the predicted gain under the theoretical model, while
at 8B (the largest observed size), regularization and distribution
match contribute roughly equally.
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(a) Gain Decomposition (b) Component Dominance

60

0

Fraction of Total Gain (%)

20

OPSD Gain (Percentage Points)
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Figure 3: Theoretical decomposition of OPSD gain into three
components. (a) Stacked area plot showing the contribution
of distribution match (red), dark knowledge (green), and reg-
ularization (yellow) as a function of model size. Black circles
show observed data. (b) Fractional contribution of each com-
ponent, revealing that distribution match dominates at large
scale while dark knowledge saturates early.

(a) MAPE (%) for Extrapolation (b) 20 Coverage

Power Law 6 %6 274 308 Power Law

Logarithmic { 02 ns w4 3 27 . Logarithmic

Coverage

Saturating | 368 161

Sigmoid 2 12 50 Sigmoid

Figure 4: Synthetic validation of extrapolation methods. (a)
MAPE (%) for each model fitted to data <8B and evaluated at
14B, 32B, and 70B under four ground-truth regimes. Lower
is better. (b) 20 prediction interval coverage. Higher is better
(nominal: 0.95). Model averaging provides the most robust
performance across regimes.

3.5 Synthetic Validation

Figure 4 presents the synthetic validation results as heatmaps of
MAPE and 20 coverage. The key finding is that no single model
reliably extrapolates across all ground-truth regimes: power law
extrapolation is excellent when the truth is a power law (MAPE ~
3%) but poor for saturating truth (MAPE > 200%). Conversely, the
saturating model excels for saturating truth but fails for power law.
Model averaging provides the most robust extrapolation: its
MAPE is 2.7% for logarithmic truth and 30.8% for power law truth,
though it struggles when the truth is saturating (161.8%) or sigmoid
(215.0%). The synthetic validation thus demonstrates both the value
of model averaging and the fundamental difficulty of extrapolating
from limited data—when the true regime is qualitatively different
from any model with non-negligible weight, all methods fail.

3.6 Bootstrap Confidence Intervals

Figure 5 shows bootstrap confidence intervals for the 70B prediction.
The model-averaged 95% CI spans [10.5, 32.6] pp with a mean of 19.8
pp- The width of this interval (22.1 pp) reflects the compounding of
data uncertainty, model parameter uncertainty, and model selection

Anon.

(a) Bootstrap 95% CI at 70B (b) Prediction Uncertainty

110.5, 3261

——120,224)

104

350 Sigmoid 2715
—i7.1, 1261 Saturating
a5 Power L 1
05,1381 Logarithmic 33

10 0

10 20 30 25
Predicted OPSD Gain at 70B (pp)

10 15 20
95% CI Width (pp)

Figure 5: Bootstrap uncertainty quantification at 70B. (a)
Bootstrap 95% confidence intervals for each model and the
model-averaged prediction. (b) CI width comparison, show-
ing that model averaging captures the full range of structural
uncertainty.

Information-Theoretic Experiment Design Optimal: 1408

N .
N l
) l

0.2 ‘
-l

Normalized Information Value

0.0 T T T T T T T
10B 14B 20B 32B 45B 70B 100B 140B

Candidate Model Size for Next Experiment

Figure 6: Information-theoretic experiment design. Bar
height represents the normalized information value (model
disagreement) at each candidate size. The optimal next ex-
periment is at 140B, where scaling law predictions diverge
most, providing maximal discriminating power.

uncertainty. Individual models show varying CI widths: the power
law has the widest CI (reflecting uncertainty in the exponent), while
the logarithmic model has the narrowest (reflecting its inherently
slower growth).

3.7 Optimal Experiment Design

Figure 6 shows the information-theoretic experiment design results.
The most informative next experiment is at 140B parameters,
where model disagreement is maximal. At this scale, the power
law predicts ~51 pp while the saturating model predicts ~9.1 pp—a
5.6x difference that would definitively distinguish between scaling
regimes. The second most informative size is 100B. Sizes below
32B provide moderate discrimination, while 70B, despite being a
practical target, provides less discrimination than 140B because it
falls between the divergence points of the candidate models.

3.8 Per-Benchmark Analysis

Figure 7 shows model-averaged predictions broken down by bench-
mark. All benchmarks show qualitatively similar scaling trends.
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Benchmark-Specific Scaling Predictions
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Figure 7: Per-benchmark model-averaged scaling predictions
with 95% confidence intervals. All three reasoning bench-
marks show qualitatively similar scaling trends, with MATH
showing slightly lower predicted gains.

GSMS8K and ARC-Challenge show the highest predicted gains at
70B (20.2 pp each), while MATH shows a slightly lower predicted
gain (18.4 pp), consistent with MATH being a harder benchmark
where absolute improvements are typically smaller.

4 CONCLUSION

We have developed a rigorous framework for extrapolating OPSD
scaling behavior beyond the 8B parameter limit of current experi-
ments. Our analysis yields several key findings:

OPSD gains likely persist beyond 8B.. All five candidate scal-
ing models, despite their different functional forms, agree that
OPSD gains continue to increase beyond 8B parameters. The model-
averaged prediction at 70B is 19.6 + 11.3 pp (bootstrap 95% CI: [10.5,
32.6]).

The growth rate is highly uncertain. Predictions at 70B range
from 9.1 pp (saturating) to 32.9 pp (power law), a 3.6X spread. This
reflects the fundamental challenge of extrapolating from five data
points spanning a 16X range (0.5-8B) to a target 8.75X beyond the
largest observation.

Distribution match drives large-scale gains. The theoretical de-
composition reveals that the on-policy distribution matching ad-
vantage grows nearly linearly with model size (N%-°°), while dark
knowledge transfer saturates around 11.5B. This suggests that the
primary benefit of OPSD at scale is avoiding distribution mismatch,
not knowledge distillation per se.

Model averaging is the most robust strategy. Synthetic validation
demonstrates that no single scaling law reliably extrapolates across
all possible ground-truth regimes. Model averaging provides the
best worst-case performance, making it the recommended approach
for resource allocation decisions.

140B is the most informative next experiment. Information-theoretic
analysis identifies 140B as the model size where scaling law predic-
tions diverge most, providing maximal discriminating power for
future experiments.

Limitations. Our analysis is fundamentally limited by the small
number of observed data points and the assumption that scaling
behavior is smooth. Architectural changes between 8B and 70B
models (e.g., grouped query attention, different depth-width ra-
tios) could introduce discontinuities. Additionally, our theoretical
decomposition is approximate and may not capture all relevant
mechanisms.

Future work should prioritize OPSD experiments at 14B and
70B to narrow the confidence intervals, and investigate whether
architectural factors interact with the OPSD scaling trend. The
framework developed here can be applied to other post-training
methods to predict their scaling behavior before committing to
expensive large-scale experiments.
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