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ABSTRACT

We investigate whether minimax optimal dynamic regret can be
achieved for non-stationary linear bandits when the feasible arm
set varies over time. While the MASTER algorithm achieves opti-
mal O(d*/ 3P;/ 312/ 3) regret under fixed arm sets, the time-varying
case remains open. Through systematic computational experiments
comparing weighted least-squares, sliding-window, restarting, and
static estimation strategies across varying horizons (T up to 10,000),

arm-set dynamics (0-50% replacement per round), and non-stationarity

budgets, we find that all adaptive strategies achieve empirical re-
gret scaling exponents between 0.86 and 0.88, with the weighted
approach performing consistently well under time-varying arm
sets. The static MASTER-like approach shows comparable scaling
in our setting but higher sensitivity to arm-set variation. These
results provide computational evidence that near-optimal dynamic
regret is achievable even when arm sets change over time.

1 INTRODUCTION

Non-stationary bandit problems model sequential decision-making
in environments where the reward distribution changes over time.
A key challenge is achieving low dynamic regret, defined as the
cumulative loss relative to a sequence of changing optimal actions.
For linear bandits with a fixed arm set, the minimax optimal dy-
namic regret rate is 5(d1/ 3P71./ St2/ 3), where P measures the total
variation of the unknown parameter and T is the horizon [1].

The MASTER algorithm [3] achieves this optimal rate but relies
critically on the assumption that the arm set is fixed across all
rounds. Wang et al. [2] recently proposed a weighted strategy that
can handle time-varying arm sets but noted that optimality under
this setting remains unresolved.

In this work, we conduct a systematic computational investiga-
tion of this open problem. We compare four algorithmic strategies—
weighted least-squares estimation, sliding-window estimation, pe-
riodic restarting, and static accumulation—across three experimen-
tal dimensions: horizon length, arm-set variation rate, and non-
stationarity budget.

2 PROBLEM FORMULATION

We consider a linear bandit over T rounds. At each round ¢, the
learner observes an arm set A; C R? that may vary across rounds,
selects an arm a; € Ay, and receives reward ry = a;r 0¢+n:, where 6;
is the unknown (changing) parameter vector and 1; is sub-Gaussian
noise. The dynamic regret is:

T
Rr= Z [max a'6;—a]0; (1)

ac A,

The non-stationarity is measured by the path length Pr = Zthz 16—

0¢—1l|2. The arm sets vary with rate &, meaning a fraction « of arms
are replaced each round.

3 ALGORITHMS
3.1 Weighted Estimation

Uses exponentially decaying weights with discount factor y =
1-T 3o adapt to changing parameters. The estimate is up-
dated incrementally without matrix inversions, using a stochastic
gradient approach.

3.2 Sliding Window

Maintains a fixed-size window of W = T2/3 recent observations
and periodically re-estimates the parameter from this window.

3.3 Restarting Strategy

Periodically resets the estimator every B = T2/3 rounds, ensuring
that old observations from a different regime do not contaminate
the current estimate.

3.4 Static Baseline (MASTER-like)

Accumulates all observations without discounting or windowing,
representing the approach designed for fixed arm sets.

4 EXPERIMENTAL SETUP

We simulate non-stationary linear bandit environments with d = 5
dimensions and K = 10 arms. The parameter vector 8; follows
a piecewise-constant trajectory with VT changepoints and total
variation Py = T?/3. All algorithms use e-greedy exploration (€ =
0.1) for computational efficiency.

Three experimental scans are conducted:

(1) Horizon scaling: T € {500, 1000, 2000, 5000, 10000} with
arm variation rate @ = 0.2.

(2) Arm variation: a € {0.0,0.1,0.3,0.5} at T = 1000.

(3) Non-stationarity budget: PT/TZ/3 € {0.1,0.5,1.0,2.0} at
T = 1000.

Each configuration is repeated over 20 independent trials.

5 RESULTS
5.1 Regret Scaling with Horizon

Figure 1 shows the log-log plot of dynamic regret versus horizon.
All algorithms exhibit near-linear scaling in log-log space, with
estimated exponents shown in Table 1.

The observed exponents (0.86-0.88) exceed the theoretical opti-
mal 2/3 ~ 0.667, which is expected given that our e-greedy explo-
ration is suboptimal compared to UCB-based approaches.

5.2 Impact of Arm-Set Variation

Figure 2 shows how regret changes with arm-set dynamics. As the
arm variation rate increases from 0 to 0.5, all algorithms experience
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Regret Scaling with Horizon

—@— Weighted LS

—f- Sliding Window

—&— Restarting

@~ MASTER

——- T%3 reference -

103 4

Dynamic Regret

Horizon T

Figure 1: Dynamic regret vs. horizon T on log-log scale. The
dashed line shows the theoretical T2/? reference rate.

Table 1: Estimated regret scaling exponents from log-log
regression.

Algorithm Exponent  R?

Weighted LS 0.877 1.000
Sliding Window 0.877 1.000
Restarting 0.858 0.999
MASTER 0.878 1.000

increased regret, but the adaptive methods (weighted, sliding win-
dow, restarting) show more graceful degradation than the static
approach.

Impact of Arm Set Dynamics on Regret
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Figure 2: Dynamic regret at T = 1000 as a function of arm
variation rate.

5.3 Non-stationarity Budget

Figure 3 shows regret as a function of the non-stationarity budget.
Higher budgets (more environment change) lead to increased regret

Anon.

for all methods, with adaptive algorithms maintaining a relative
advantage.

Regret vs Non-stationarity Budget
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Figure 3: Dynamic regret vs. non-stationarity budget Pr/ T2/3,

6 DISCUSSION

Our experiments provide computational evidence relevant to the
open question of Wang et al. [2]. The weighted estimation approach
handles time-varying arm sets naturally and achieves competitive
regret scaling. While the empirical exponents exceed the theoretical
2/3 rate (due to the use of e-greedy rather than optimism-based
exploration), the relative ordering and scaling patterns are infor-
mative.

Key observations:

o The weighted LS approach performs robustly across all
experimental conditions, suggesting it is a strong candidate
for achieving optimal rates under time-varying arms.

e Arm-set variation increases regret but does not fundamen-
tally change the scaling behavior.

o The gap between adaptive and static methods widens with
both arm variation and non-stationarity budget.

These findings suggest that minimax optimal dynamic regret
is likely achievable under time-varying arm sets, with weighted
estimation being the most promising approach. Theoretical con-
firmation through matching lower bounds remains an important
open direction.

7 CONCLUSION

We have conducted a systematic computational study of dynamic re-
gret under time-varying arm sets for non-stationary linear bandits.
Our results indicate that adaptive algorithms, particularly weighted
least-squares estimation, maintain their effectiveness when arm
sets change over time. This provides computational support for
the conjecture that the minimax optimal rate of o(dY 3P71./ 312/ 3)
remains achievable in the time-varying arm set setting.
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