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Computational Study of Optimal Rates for Sequential Marginal
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ABSTRACT
We computationally investigate the optimal minimax rate for se-
quential marginal calibration error in online forecasting against
adversarial outcomes. The true rate lies between Ω(𝑇 0.54) and
𝑂 (𝑇 2/3), a decades-long gap.We implement four forecasting algorithms—
fixed-grid, adaptive-grid, randomized-rounding, andminimax potential-
based—and evaluate them against four adversarial strategies across
horizons up to 𝑇 = 10,000. Our experiments reveal that against
the adaptive anti-calibration adversary, all algorithms exhibit near-
linear scaling (exponents≈ 0.98–1.00), indicating that simple discretization-
based approaches face fundamental limitations against worst-case
adversaries. The adaptive grid forecaster achieves slightly better
scaling (0.983), suggesting that grid refinement provides a measur-
able advantage. These results highlight the difficulty of the sequen-
tial calibration problem and suggest that novel algorithmic ideas
beyond grid-based approaches may be needed to approach the𝑇 2/3

upper bound.

1 INTRODUCTION
Calibration is a fundamental property of probabilistic forecasts: a
forecaster is calibrated if, among all instances where it predicts
probability 𝑣 , the empirical frequency of the positive outcome is
approximately 𝑣 . The study of online calibration [2, 3] asks how
quickly calibration error can be driven to zero.

For marginal calibration, the error metric aggregates absolute
biases over distinct prediction values:

Err𝑇 =
∑︁

𝑣∈{𝑝1,...,𝑝𝑇 }

������ ∑︁𝑡 :𝑝𝑡=𝑣(𝑝𝑡 − 𝑦𝑡 )
������ (1)

The optimal minimax rate of this quantity as a function of
horizon 𝑇 remains a long-standing open question [1]. Classical
work established an 𝑂 (𝑇 2/3) upper bound, recently improved to
𝑂 (𝑇 2/3−𝜖 ) [4], while lower bounds stand at Ω(𝑇 0.54).

2 FORECASTING ALGORITHMS
We implement four online forecasting strategies:

Fixed Grid. Discretizes [0, 1] into a fixed grid of 𝐾 points and
tracks per-bucket statistics. At each round, it predicts the grid value
closest to its empirical accuracy.

Adaptive Grid. Starts with a coarse grid and periodically re-
fines it by adding midpoints between existing grid values, adapting
resolution to prediction frequency.

Randomized Rounding.Maintains an internal continuous pre-
diction and rounds to adjacent grid points with probabilities pro-
portional to proximity, reducing systematic rounding bias.

Minimax Potential. Uses a potential-based selection rule that
minimizes the absolute running bias across grid buckets, targeting
worst-case calibration.

3 EXPERIMENTAL SETUP
Each forecaster is evaluated over horizons𝑇 ∈ {500, 1000, 2000, 5000, 10000}
with 10 trials per configuration. We test against four adversaries:
oblivious block-switching, adaptive anti-calibration (choosing out-
comes to maximize error given the prediction), i.i.d. Bernoulli, and
random switching patterns.

4 RESULTS
4.1 Horizon Scaling
Figure 1 shows calibration error versus horizon on a log-log scale.
All algorithms exhibit near-linear scaling against the adaptive ad-
versary.

Figure 1: Calibration error vs. horizon. Reference lines show
the 𝑇 2/3 upper bound and 𝑇 0.54 lower bound.

Table 1 shows the estimated scaling exponents. All are close to
1.0, indicating that against worst-case adversaries, grid-based ap-
proaches struggle to achieve sublinear calibration error at practical
horizons.

Table 1: Scaling exponents from log-log regression.

Forecaster Exponent 𝑅2

Fixed Grid 0.995 1.000
Adaptive Grid 0.983 1.000
Randomized Rounding 1.000 1.000
Minimax Potential 1.000 1.000

4.2 Adversary Comparison
Figure 2 compares calibration error across adversary types at 𝑇 =

2000. The adaptive anti-calibration adversary produces substantially
1
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higher error than other adversary types, confirming it as the hardest
case.

Figure 2: Calibration error by adversary type at 𝑇 = 2000.

5 DISCUSSION
The near-linear empirical scaling reveals a gap between theoret-
ical guarantees and practical performance of grid-based forecast-
ers against worst-case adversaries. The theoretical 𝑂 (𝑇 2/3) bound

relies on carefully designed algorithms that maintain calibration
through sophisticated online learning, while our simpler implemen-
tations face the full force of the adaptive adversary.

The adaptive grid achieves slightly lower exponent (0.983 vs.
1.000), suggesting that grid refinement helps but is insufficient alone.
This points to the need for fundamentally different approaches—
possibly continuous prediction spaceswith carefully designed round-
ing schemes—to bridge the gap to the theoretical optimum.

6 CONCLUSION
Our computational study confirms the difficulty of the sequential
marginal calibration problem. The gap between the known bounds
(𝑇 0.54 to 𝑇 2/3) remains unresolved, and our experiments suggest
that closing it requires algorithmic innovations beyond standard
grid-based approaches.
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