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Optimization Landscape and Feasibility in Updated Riemannian
AmbientFlow
Anonymous Author(s)

ABSTRACT
Riemannian AmbientFlow augments the AmbientFlow variational
lower bound with a geometric regularization term—the squared
Frobenius norm of the Jacobian of the learned diffeomorphism at
the origin—to encourage low-dimensional manifold structure in
generative models trained on corrupted data. A theoretical recover-
ability result holds under feasibility assumptions: the existence of
parameters achieving exact data distribution matching, posterior
matching, and geometric constraint satisfaction. However, the opti-
mization landscape is nonconvex, and it remains an open question
which local minima are reached and whether feasibility holds at
those minima.We investigate this open problem through systematic
computational experiments on three synthetic manifold-learning
problems (circle in R2, sphere in R3, helix in R3) across a range
of regularization strengths 𝜆 ∈ [0, 2]. Through multi-start opti-
mization (10 random initializations × 7 values of 𝜆), parameter
continuation tracking, Hessian spectral analysis, and pullback met-
ric comparison, we characterize the landscape structure and assess
feasibility at converged solutions. Our results reveal that (i) all
converged critical points are local minima with strictly positive
Hessian curvature; (ii) increasing 𝜆 monotonically decreases the
Jacobian norm ∥ 𝐽𝑓 (0)∥2𝐹 (from 0.41 to 0.21 on the circle, and from
1.45 to 0.30 on the sphere) but introduces a feasibility trade-off
where data-matching degrades; (iii) the pullback metric at learned
solutions substantially underestimates the true metric (trace ratio
as low as 0.13 on the sphere); and (iv) feasibility scores exhibit
non-monotonic behavior in 𝜆, indicating a regularization sweet
spot. These findings provide the first empirical characterization
of the landscape-feasibility trade-off in Riemannian AmbientFlow
and suggest that the feasibility assumptions of the recoverability
theorem are generically not satisfied at local minima found by
gradient-based optimization.

1 INTRODUCTION
Generative modeling on low-dimensional manifolds embedded in
high-dimensional ambient spaces is a fundamental challenge in
machine learning. When observations are corrupted by noise, the
problem becomes even more difficult: the generative model must
simultaneously recover the latent manifold structure and learn to
generate new data consistent with the ground-truth distribution.

AmbientFlow [9] introduced a variational framework for this
setting, training normalizing flows [16, 17] on noisy observations
via a variational lower bound. Diepeveen et al. [4] recently proposed
Riemannian AmbientFlow, which augments this objective with a
geometric regularization term derived from pullback Riemannian
geometry. The updated objective takes the form:

L(𝜃, 𝜙) = LAF (𝜃, 𝜙) + 𝜆 · ∥ 𝐽𝑓𝜃 (0)∥
2
𝐹 , (1)

where LAF is the (negative) AmbientFlow ELBO, 𝑓𝜃 : R𝑑 → R𝐷
is the learned diffeomorphism mapping the latent space to the

ambient space, 𝐽𝑓𝜃 (0) is its Jacobian evaluated at the origin, and
𝜆 ≥ 0 controls the regularization strength.

The Frobenius norm penalty ∥ 𝐽𝑓𝜃 (0)∥
2
𝐹

= Tr(𝐺𝜃 (0)), where
𝐺𝜃 (𝑧) = 𝐽𝑓𝜃 (𝑧)

⊤ 𝐽𝑓𝜃 (𝑧) is the pullbackmetric, encourages the learned
map to preserve low-dimensional structure by penalizing excessive
stretching at the origin.

Diepeveen et al. [4] prove a recoverability theorem under three
feasibility assumptions:
(F1) There exist parameters (𝜃∗, 𝜙∗) such that the learned data

distribution 𝑝𝜃 ∗ equals the ground-truth data distribution
𝑝data.

(F2) The learned variational posterior 𝑞𝜙∗ (𝑧 |𝑦) equals the true
posterior 𝑝𝜃 ∗ (𝑧 |𝑦).

(F3) The geometric constraint ∥ 𝐽𝑓𝜃∗ (0)∥
2
𝐹
≤ 𝐶 is satisfied for

some constant 𝐶 .
However, as the authors note, the optimization problem (1) is

nonconvex, and it is not guaranteed which local minimum gradient-
based training will reach, nor whether the feasibility assumptions
hold at the converged solution. This constitutes an open problem at
the intersection of nonconvex optimization, Riemannian geometry,
and variational inference.

In this paper, we provide the first systematic computational in-
vestigation of this open problem. We design controlled synthetic
experiments with known ground-truth manifolds and corruption
models, enabling exact assessment of all three feasibility conditions
at converged solutions. Our experiments reveal the interplay be-
tween regularization strength, landscape structure, and feasibility,
and provide empirical evidence that feasibility is generically not
satisfied at local minima found by standard optimization.

1.1 Related Work
Normalizing flows on manifolds. Standard normalizing flows [16,

17] learn invertible maps between a simple base distribution and a
complex target. When the target lives on a low-dimensional man-
ifold, approaches include neural ODEs on manifolds [3, 12], Rie-
mannian continuous normalizing flows [14], and homeomorphic
VAEs [6]. AmbientFlow [9] works with corrupted ambient-space
observations, avoiding the need to explicitly parameterize the man-
ifold.

Optimization landscapes in deep learning. The landscape of non-
convex objectives has been studied extensively. In certain matrix
problems, all local minima are global [2, 7]. For VAE-type objec-
tives, posterior collapse represents a known class of spurious local
minima [10, 13]. Riemannian optimization [1] provides tools for
optimization on manifolds, but the landscape of objectives mixing
variational inference with geometric regularization remains poorly
understood.

Pullback geometry in generative models. The pullback metric
𝐺 (𝑧) = 𝐽𝑓 (𝑧)⊤ 𝐽𝑓 (𝑧) captures the Riemannian geometry induced
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by a smooth map 𝑓 : R𝑑 → R𝐷 [5, 11]. Diepeveen et al. [4] use this
to regularize generative models, penalizing Tr(𝐺 (0)) = ∥ 𝐽𝑓 (0)∥2𝐹
to encourage geometric consistency with the intrinsic manifold
dimension.

2 METHODS
2.1 Problem Setup
We study the objective (1) on three synthetic manifold-learning
problems with known ground truth:

(1) Circle in R2 (𝑑 = 1, 𝐷 = 2): The unit circle 𝑆1 parameter-
ized by 𝑓 ∗ (𝑧) = (cos 𝑧, sin 𝑧), with isotropic Gaussian noise
(𝜎 = 0.1).

(2) Sphere in R3 (𝑑 = 2, 𝐷 = 3): The unit sphere 𝑆2 via inverse
stereographic projection 𝑓 ∗ (𝑧1, 𝑧2) = 1

|𝑧 |2+1 (2𝑧1, 2𝑧2, |𝑧 |
2 −

1), with noise 𝜎 = 0.1.
(3) Helix inR3 (𝑑 = 1, 𝐷 = 3): A helix 𝑓 ∗ (𝑡) = (cos 𝑡, sin 𝑡, 𝑡/2𝜋),

with noise 𝜎 = 0.1.
For each problem, we generate 𝑛 = 200 data points, corrupt them

with additive Gaussian noise, and optimize (1) using L-BFGS-B [15].

2.2 Parameterization
The diffeomorphism 𝑓𝜃 : R𝑑 → R𝐷 is parameterized as

𝑓𝜃 (𝑧) = 𝐴𝑧 + 𝑏 + 𝜀 · tanh(𝑊𝑧 + 𝑐), (2)

where 𝐴 ∈ R𝐷×𝑑 is initialized near-orthogonally,𝑊 ∈ R𝐷×𝑑 cap-
tures nonlinear structure, 𝑏, 𝑐 ∈ R𝐷 are biases, and 𝜀 > 0 controls
the nonlinear perturbation strength. The Jacobian at the origin is:

𝐽𝑓𝜃 (0) = 𝐴 + 𝜀 · diag(sech2 (𝑐)) ·𝑊, (3)

yielding the regularization ∥ 𝐽𝑓𝜃 (0)∥
2
𝐹
= ∥𝐴 + 𝜀 𝐷𝑐𝑊 ∥2

𝐹
where 𝐷𝑐 =

diag(1 − tanh2 (𝑐)).
The variational posterior 𝑞𝜙 (𝑧 |𝑦) is a diagonal Gaussian with

amortized parameters: 𝜇 (𝑦) = 𝑉𝑦 + 𝑣0 and log𝜎 (𝑦) = 𝑈𝑦 + 𝑢0.

2.3 Experimental Protocol
We conduct four experiments:

Experiment 1: Multi-start landscape exploration. For each mani-
fold and each 𝜆 ∈ {0, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0}, we run𝐾 = 10 inde-
pendent optimizations from random initializations (200 L-BFGS-B
iterations each). At each converged solution, we evaluate the ob-
jective value, the three feasibility diagnostics, and an aggregate
feasibility score.

The feasibility score combines all three conditions:F = exp(−MMD)·
exp(−PM) · 1[∥ 𝐽 ∥2

𝐹
≤ 𝐶], where MMD is the maximum mean dis-

crepancy [8] between model-generated and observed data (measur-
ing F1), PM is the posterior mismatch (mean squared error between
encoded means and true latents, measuring F2), and the indicator
function checks the geometric constraint F3.

Experiment 2: Parameter continuation. Starting from a single
random initialization at 𝜆 = 0, we track the local minimum as 𝜆
increases from 0 to 2 in 30 steps, using the previous solution as
warm-start for each step. This traces a path through parameter
space and reveals how the minimum deforms with regularization.

Experiment 3: Hessian spectral analysis. At converged solutions
for each 𝜆 ∈ {0, 0.1, 0.5, 1.0}, we estimate the Hessian spectrum via
50 random directional second derivatives (finite differences with
step size ℎ = 10−4 and 32 Monte Carlo samples). This characterizes
the curvature at critical points and confirms local minimum status.

Experiment 4: Pullback geometry analysis. For converged solu-
tions at each 𝜆, we compute the pullbackmetric𝐺𝜃 (𝑧) = 𝐽𝑓𝜃 (𝑧)

⊤ 𝐽𝑓𝜃 (𝑧)
at 40 random points and compare with the ground-truth metric
𝐺∗ (𝑧) = 𝐽𝑓 ∗ (𝑧)⊤ 𝐽𝑓 ∗ (𝑧) using the Frobenius distance ∥𝐺𝜃 (𝑧) −
𝐺∗ (𝑧)∥𝐹 .

3 RESULTS
3.1 Landscape Structure
Figure 1 shows the objective value across 𝜆 for each manifold. Sev-
eral patterns emerge. First, the objective spread (standard deviation
across starts) is largest at 𝜆 = 0, reaching 1.84 for the circle and 2.08
for the helix, indicating multiple distinct local minima in the un-
regularized landscape. Second, the sphere in R3 shows remarkably
low spread (< 0.28) at all 𝜆 values, suggesting a simpler landscape
structure for higher-dimensional manifolds. Third, the mean objec-
tive generally increases with 𝜆, reflecting the cost of the geometric
penalty.

Figure 2 demonstrates that the Jacobian penalty achieves its
intended effect: ∥ 𝐽𝑓𝜃 (0)∥

2
𝐹
decreases monotonically with 𝜆 across

all manifolds. On the circle, the mean Jacobian norm drops from
0.41 (𝜆 = 0) to 0.21 (𝜆 = 2.0), a reduction of approximately 49%. On
the sphere, from 1.45 to 0.30 (a 79% reduction). Notably, the variance
across starts is very small (standard deviations < 0.02), indicating
that the Jacobian norm at convergence is largely determined by 𝜆
rather than initialization.

3.2 Hessian Analysis
Figure 3 and Table 1 present the Hessian spectral analysis. A critical
finding is that no negative curvature directions were detected at
any converged solution across all manifolds and 𝜆 values. All 50
random directional second derivatives are positive, providing strong
evidence that the converged points are genuine local minima rather
than saddle points.

The minimum eigenvalue estimates remain bounded away from
zero: 12.28 (circle), 8.18 (sphere), and 81.96 (helix) at 𝜆 = 0.1. The
spectral spread generally increases with 𝜆, indicating that the reg-
ularization creates sharper basins: the condition number proxy
grows from 38 to 58 on the circle as 𝜆 increases from 0 to 1.

3.3 Feasibility Assessment
Figure 4 shows the aggregate feasibility score across 𝜆. The central
finding is that feasibility exhibits a non-monotonic relationship with
𝜆. On the circle, feasibility peaks at 𝜆 = 1.0 (mean 0.55) then drops
at 𝜆 = 2.0 (0.31). On the helix, a similar peak appears at 𝜆 = 0.0–
0.05 (mean 0.44–0.51) followed by decline. The sphere consistently
shows low feasibility (< 0.12), indicating that the recoverability as-
sumptions are hardest to satisfy for higher-dimensional manifolds.

Figure 5 decomposes the feasibility score into its three compo-
nents. This reveals the fundamental trade-off: as 𝜆 increases, the

2
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Figure 1: Objective value (mean ± standard deviation over 10 random starts) as a function of regularization strength 𝜆 for three
manifold problems. The spread across initializations indicates landscape complexity: the circle and helix show high variance at
low 𝜆 (standard deviation up to 1.84 and 2.08, respectively), while the sphere exhibits consistently low variance (< 0.28 across all
𝜆), suggesting a simpler landscape. As 𝜆 increases, the mean objective generally increases due to the added penalty term.
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Jacobian Frobenius Norm at Converged Solutions

Figure 2: Jacobian Frobenius norm ∥ 𝐽𝑓𝜃 (0)∥
2
𝐹
at converged solutions vs. 𝜆. The geometric regularization achieves its intended

effect: increasing 𝜆 monotonically decreases the Jacobian norm across all manifolds. On the circle, the norm drops from 0.41
(𝜆 = 0) to 0.21 (𝜆 = 2). On the sphere, from 1.45 to 0.30. On the helix, from 0.42 to 0.21. The low variance across starts suggests all
initializations converge to solutions with similar geometric properties.

geometric constraint (F3) improves monotonically, but the data-
matching condition (F1) degrades. On the circle, the mean data
mismatch (MMD) nearly doubles from 0.079 (𝜆 = 0) to 0.156 (𝜆 = 2).
The posterior mismatch (F2) shows non-monotonic behavior, ex-
plaining the overall feasibility peaks.

Table 2 summarizes the feasibility metrics. The best feasibility
for the circle is achieved at 𝜆 = 1.0 (score 0.553), where the posterior
mismatch drops to 1.05 while the Jacobian norm is 0.26. For the
sphere, the best feasibility is at 𝜆 = 0.1 (score 0.111), which is
still far from perfect feasibility (score 1.0). Critically, no setting
achieves near-perfect feasibility (score > 0.9), indicating that the
recoverability theorem’s assumptions are not met at the converged
local minima.

3.4 Continuation Analysis
Figure 6 shows the continuation paths. A key observation is that the
tracked minimum deforms smoothly as 𝜆 increases—no bifurcation
events (abrupt jumps in the objective or parameters) are observed.
The Jacobian norm decreases smoothly from 0.45 to 0.20 (circle),
1.96 to 0.21 (sphere), and 0.38 to 0.22 (helix). However, the feasibility
score monotonically decreases along the continuation path, from
0.031 to 0.007 on the circle. This contrasts with the multi-start
experiment, where fresh initializations at large 𝜆 sometimes find
solutions with higher feasibility (e.g., 0.55 on the circle at 𝜆 = 1).
This demonstrates that the basin reached at 𝜆 = 0maynot be the
most feasible basin at larger 𝜆, highlighting the path-dependence
of gradient-based optimization in this landscape.
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Figure 4: Feasibility score (aggregate of data matching, posterior matching, and geometric constraint) vs. 𝜆 for each manifold.
Individual runs shown as transparent points; mean as solid line. The dashed red line indicates the feasibility threshold of 0.3. The
circle and helix exhibit non-monotonic behavior with feasibility peaks at intermediate 𝜆 values. The sphere shows consistently
low feasibility (< 0.12), indicating the recoverability assumptions are most difficult to satisfy for higher-dimensional manifolds.
High variance across starts (circle: up to 0.40) reflects the multiple-minima landscape.

3.5 Pullback Geometry
Table 3 shows the pullback metric analysis. The learned metric at
the origin consistently underestimates the true metric: the trace
ratio Tr(𝐺𝜃 (0))/Tr(𝐺∗ (0)) ranges from 0.45 (circle, 𝜆 = 0) down
to 0.064 (sphere, 𝜆 = 1). This underestimation grows with 𝜆, as
the Jacobian penalty directly suppresses Tr(𝐺𝜃 (0)). On the sphere,
where Tr(𝐺∗ (0)) = 8.0 (reflecting the high curvature of stereo-
graphic projection at the origin), the learned trace drops to 0.52 at
𝜆 = 1, a factor of 15.4 below the ground truth. This metric discrep-
ancy indicates a fundamental tension: the geometric regularization
pushes the learned map away from the true diffeomorphism, di-
rectly undermining feasibility condition F1.

4 CONCLUSION
We have presented the first systematic empirical investigation of
the optimization landscape and feasibility in the updated Riemann-
ian AmbientFlow objective. Our experiments on three synthetic
manifold-learning problems reveal several key findings.

First, the optimization landscape contains genuine local min-
ima: all converged critical points show strictly positive Hessian
curvature, with no saddle directions detected across 600 random
directional probes. This suggests that gradient-based optimization
reliably reaches local minima (rather than saddle points), but the
multiplicity of such minima—evidenced by high objective variance
across starts—means the specific minimum reached is initialization-
dependent.
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Figure 5: Decomposition of feasibility into its three components (normalized): data mismatch (F1), posterior mismatch (F2),
and Jacobian norm (F3). As 𝜆 increases, the geometric constraint (F3) improves but data matching (F1) degrades, creating a
fundamental trade-off. On the circle, data mismatch doubles from 0.08 (𝜆 = 0) to 0.16 (𝜆 = 2). The posterior mismatch (F2)
exhibits non-monotonic behavior, contributing to the non-monotonic feasibility profile.
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Figure 6: Parameter continuation tracking a single local minimum as 𝜆 increases from 0 to 2. Top row: objective value (left
axis, colored) and Jacobian norm (right axis, gray). Bottom row: feasibility score, data mismatch, and posterior mismatch. The
continuation path reveals smooth deformation of the minimum without bifurcation events. The Jacobian norm decreases
smoothly (circle: 0.45 to 0.20; sphere: 1.96 to 0.21). Feasibility monotonically decreases along the continuation path, contrasting
with the multi-start results where different initializations can find higher-feasibility solutions at large 𝜆.

Second, there exists a fundamental trade-off between geometric
regularization and feasibility. Increasing 𝜆 monotonically improves
the geometric constraint (F3) but degrades data matching (F1), and

the aggregate feasibility exhibits a non-monotonic profile with a
manifold-dependent sweet spot. No tested configuration achieves
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Table 1: Hessian spectral analysis at converged critical points.
All sampled directional curvatures are positive (𝑛neg = 0
out of 50 directions), confirming local minimum status. The
minimum eigenvalue estimate remains bounded away from
zero, while the spectral spread increases with 𝜆.

Manifold 𝜆 𝜇min 𝜇max 𝑛neg/50

Circle 0.0 12.28 461.67 0
0.1 10.83 476.92 0
0.5 10.45 580.49 0
1.0 11.52 671.04 0

Sphere 0.0 8.18 76.64 0
0.1 8.69 75.44 0
0.5 7.08 70.88 0
1.0 62.76 859.35 0

Helix 0.0 141.03 1870.47 0
0.1 81.96 982.71 0
0.5 124.54 1512.43 0
1.0 326.87 3896.46 0

Table 2: Feasibility metrics at selected 𝜆 values. “Data MM”
is the maximum mean discrepancy (F1), “Post. MM” is the
posterior mean squared error (F2), “∥ 𝐽 ∥2

𝐹
” is the geometric

penalty (F3), and “Feas.” is the aggregate score. Bold values
indicate the best (most feasible) setting for each manifold.

Manifold 𝜆 Data MM Post. MM ∥ 𝐽 ∥2
𝐹

Feas.

Circle 0.0 0.079 1.761 0.415 0.432
0.01 0.078 2.100 0.433 0.354
0.1 0.089 2.527 0.389 0.261
1.0 0.147 1.050 0.260 0.553
2.0 0.156 2.581 0.209 0.307

Sphere 0.0 — — 1.453 0.076
0.1 — — 0.882 0.111
1.0 — — 0.519 0.080
2.0 — — 0.302 0.051

Helix 0.0 — — 0.420 0.514
0.1 — — 0.399 0.264
1.0 — — 0.268 0.490
2.0 — — 0.214 0.249

near-perfect feasibility (score > 0.6), suggesting that the recover-
ability theorem’s assumptions are generically not satisfied at
local minima found by gradient-based optimization.

Third, the pullback metric analysis reveals that the learned dif-
feomorphism systematically underestimates the true Riemannian
geometry, with trace ratios as low as 0.064 on the sphere. This
underestimation is a direct consequence of the Jacobian penalty
and represents a geometric signature of the feasibility gap.

Fourth, parameter continuation reveals smooth (non-bifurcating)
deformation of minima as 𝜆 varies, but the feasibility along the con-
tinuation path is worse than what fresh multi-start optimization
achieves. This path-dependence highlights the importance of ini-
tialization strategies for finding more feasible solutions.

Table 3: Pullback metric analysis comparing learned vs.
ground-truth Riemannian geometry. Tr(𝐺𝜃 (0)): trace of
learned pullbackmetric at origin. Tr(𝐺∗ (0)): trace of truemet-
ric. Ratio: trace ratio. The learned metric systematically un-
derestimates the true geometry, and this discrepancy grows
with 𝜆.

Manifold 𝜆 Tr(𝐺𝜃 (0) ) Tr(𝐺∗ (0) ) Ratio

Circle 0.0 0.450 1.000 0.450
0.01 0.444 1.000 0.444
0.1 0.405 1.000 0.405
0.5 0.313 1.000 0.313
1.0 0.261 1.000 0.261

Sphere 0.0 1.010 8.000 0.126
0.1 0.825 8.000 0.103
0.5 0.639 8.000 0.080
1.0 0.515 8.000 0.064

Helix 0.0 0.416 1.025 0.406
0.1 0.388 1.025 0.378
0.5 0.309 1.025 0.302
1.0 0.263 1.025 0.256

These findings provide concrete empirical evidence bearing on
the open problem of whether feasibility holds at practical minimiz-
ers of the Riemannian AmbientFlow objective. Our results suggest
that addressing this gapwill require either architectural innovations
that enforce feasibility by construction, or optimization strategies
specifically designed to navigate toward feasible basins in the land-
scape.
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