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Identifying Non-Learned Matrix Components in Neural Network
Training
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ABSTRACT
We investigate optimization-induced flaws in neural network train-
ing beyond the known unlearned matrix scale. By decomposing
trained weight matrices into components—row norms, column
norms, singular values, condition number, effective rank, and spec-
tral gap—we systematically measure which properties SGD learns
well versus poorly across varying dimensions and matrix struc-
tures. Our experiments reveal that while row/column norms show
moderate learning errors (consistent with prior work on learnable
multipliers), the condition number and spectral gap exhibit sub-
stantially worse learning quality, with relative errors 2–5× larger.
Learnable multipliers improve norm-related components but pro-
vide limited benefit for spectral properties. These findings suggest
that spectral structure represents a distinct class of optimization
flaws requiring new corrective strategies.

1 INTRODUCTION
Velikanov et al. [3] identified that standard LLM training fails to
learn the correct scale of parameter matrices, proposing learnable
multipliers as a correction. They explicitly asked whether other
components beyond row and column norms are also not learned
automatically. This work systematically investigates that question.

Prior work on implicit regularization inmatrix factorization [1, 2]
has shown that gradient descent exhibits implicit biases toward
low-rank solutions. We extend this line of inquiry by asking: which
specific structural properties of weight matrices are well-captured
by SGD, and which are systematically distorted?

2 METHODOLOGY
2.1 Matrix Decomposition
For a weight matrix𝑊 ∈ R𝑚×𝑛 , we track the following components
during training:

• Row norms: ∥𝑊𝑖,:∥2 for each row 𝑖

• Column norms: ∥𝑊:, 𝑗 ∥2 for each column 𝑗

• Singular values: 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎min(𝑚,𝑛)
• Condition number: 𝜅 = 𝜎1/𝜎min
• Effective rank: |{𝑖 : 𝜎𝑖 > 0.01𝜎1}|
• Spectral gap: (𝜎1 − 𝜎2)/𝜎1

2.2 Experimental Design
We trainmatrices via SGD on synthetic regression taskswith known
target matrices. Three target structures are tested: low-rank, block-
diagonal, and heterogeneous-norm. Dimensions range from 16 to
64. Each configuration is evaluated with and without learnable
row/column multipliers.

3 RESULTS
3.1 Component Learning Quality
Figure 1 shows relative error for each component versus hidden
dimension. The condition number and spectral gap consistently
show the worst learning, with errors 2–5× larger than row/column
norms.

Figure 1: Relative error of each matrix component across
hidden dimensions.

3.2 Learnable Multiplier Effect
Figure 2 compares standard training with learnable multipliers
across three matrix structures. Multipliers consistently reduce row
and column norm errors but have limited impact on singular value
structure and overall matrix error.

Figure 2: Component errors: standard training vs. learnable
multipliers.

3.3 Structure Sensitivity
Figure 3 shows that the pattern of poorly-learned components
depends on the target matrix structure. Block-diagonal targets
pose the greatest challenge for condition number learning, while
heterogeneous-norm targets make row/column norms harder to
learn.
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Figure 3: Component errors by matrix structure type.

4 DISCUSSION
Our results provide evidence for additional optimization flaws be-
yond the unlearned scale:

(1) Spectral structure: Condition number and spectral gap
are systematically poorly learned, suggesting SGD fails to
recover the correct spectral decomposition.

(2) Multiplier limitations: Learnable multipliers [3] address
norm-related flaws but leave spectral flaws unresolved.

(3) Structure dependence: The severity of each flaw depends
on the target matrix structure, suggesting that different cor-
rection strategies may be needed for different layer types.

These findings motivate the development of new corrective
mechanisms targeting spectral properties, such as learnable singu-
lar value corrections or structured spectral regularization.

5 CONCLUSION
We have identified spectral structure (condition number, spectral
gap) as an additional class of optimization flaws in neural net-
work training beyond the known unlearned matrix scale. Standard
learnable multipliers provide partial but incomplete correction, sug-
gesting the need for richer parametric corrections.
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