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Empirical Analysis of Output-Polynomial Enumeration for the
Bi-Objective Knapsack Pareto Set

Anonymous Author(s)

ABSTRACT
The bi-objective 0–1 knapsack problem asks to enumerate all Pareto-
optimal solutions that simultaneously minimize total weight and
maximize total profit. Whether this enumeration admits an output-
polynomial time algorithm—one running in time polynomial in
both the input size 𝑛 and the output size |P |—is an important
open problem at the intersection of combinatorial optimization and
enumeration complexity. The classical Nemhauser–Ullmann (NU)
dynamic programming algorithm has been shown to fail in the
output-polynomial sense due to intermediate Pareto set blowup
on adversarial instances. We present a comprehensive empirical
study of the structural and computational landscape of this problem.
Through systematic experiments on four classes of instances (ran-
dom, correlated, anti-correlated, and adversarial), we characterize
how Pareto set size scales with the number of items, analyze the NU
algorithm’s intermediate set behavior, and evaluate the feasibility
of reverse-search enumeration. Our results reveal that: (1) Pareto
set growth is strongly instance-dependent, ranging from linear to
quadratic in 𝑛 for stochastic instances; (2) weight-profit correlation
is a dominant structural predictor of Pareto set size; (3) the reverse-
search tree exhibits bounded average branching factor on random
instances, suggesting that reverse search may be viable for practical
enumeration; and (4) the NU algorithm’s runtime is well-predicted
by the final Pareto set size on all tested instance classes. These
findings identify structural parameters that govern the complexity
landscape and inform the design of future algorithms for this open
problem.

CCS CONCEPTS
• Theory of computation → Approximation algorithms anal-
ysis; Computational complexity and cryptography.

KEYWORDS
multi-objective optimization, Pareto set enumeration, output-polynomial
algorithm, knapsack problem, enumeration complexity
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1 INTRODUCTION
Multi-objective combinatorial optimization is fundamental to knowl-
edge discovery and data mining, where decisions often involve
simultaneously optimizing conflicting objectives such as accuracy
versus interpretability, precision versus recall, or cost versus qual-
ity [6]. The Pareto set (or Pareto frontier) of a multi-objective prob-
lem consists of all solutions that are not dominated by any other
feasible solution. Computing the full Pareto set is a central task in
multi-objective optimization, enabling decision-makers to under-
stand the full range of trade-offs.

A key complexity-theoretic question is whether the Pareto set
can be enumerated in output-polynomial time—that is, in time poly-
nomial in both the input size and the number of Pareto-optimal
solutions. This notion is the natural efficiency measure for enumer-
ation problems where the output can be exponentially large: an
output-polynomial algorithm ensures that the computational cost
is proportional to the size of the answer, not the size of the search
space.

The bi-objective 0–1 knapsack problem is a canonical testbed for
this question. Given 𝑛 items with weights 𝑤1, . . . ,𝑤𝑛 and profits
𝑝1, . . . , 𝑝𝑛 , and a capacity𝑊 , the problem asks to find all Pareto-
optimal subsets 𝑆 ⊆ {1, . . . , 𝑛} with respect to the two objectives:
minimize

∑
𝑖∈𝑆 𝑤𝑖 and maximize

∑
𝑖∈𝑆 𝑝𝑖 , subject to

∑
𝑖∈𝑆 𝑤𝑖 ≤𝑊 .

OpenProblem.Does there exist an output-polynomial
time algorithm for computing the full Pareto set of
the bi-objective 0–1 knapsack problem? [11, 12]

The classical Nemhauser–Ullmann (NU) algorithm [10] pro-
cesses items sequentially via dynamic programming, maintaining
the Pareto front of prefix subproblems. Nikoleit et al. [11] con-
structed adversarial instances on which the NU algorithm’s inter-
mediate Pareto sets are exponentially larger than the final output,
proving that the NU algorithm is not output-polynomial. However,
this does not settle the question for other algorithmic strategies.

In this paper, we present a systematic empirical investigation of
the computational landscape surrounding this open problem. Our
contributions are:

(1) Pareto set scaling characterization. We measure how
Pareto set sizes grow across four instance classes (random,
correlated, anti-correlated, adversarial) for 𝑛 up to 24, re-
vealing strongly instance-dependent behavior ranging from
Θ(𝑛) to Θ(𝑛2).

(2) Structural predictors.We identify the weight-profit corre-
lation 𝜌 and the profit-to-weight density range as dominant
structural features governing Pareto set size, with implica-
tions for instance-adaptive algorithms.

(3) NU algorithm analysis. We study the intermediate set
size profiles of the NU algorithm on multiple adversarial
constructions and random instances, quantifying the rela-
tionship between intermediate and final set sizes.

1
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(4) Reverse-search feasibility.We implement and evaluate
a reverse-search enumeration prototype based on the Avis–
Fukuda framework [1], showing that the reverse-search
tree has bounded average branching factor (< 1) on random
instances, with 100% reachability.

(5) Runtime scaling.We demonstrate that the NU algorithm’s
empirical runtime scales polynomially with the final Pareto
set size on all tested instance classes, despite not being
output-polynomial in the worst case.

All experiments are fully reproducible. Code and data are avail-
able in the supplementary material.

1.1 Related Work
Multi-objective knapsack. The bi-objective knapsack problem
has been extensively studied in combinatorial optimization [2, 9].
The NU dynamic programming algorithm [10] is the classical exact
method. Bazgan et al. [2] developed efficient implementations for
multi-objective knapsack variants.

Smoothed analysis. Beier and Vöcking [3, 4] showed that
under smoothed analysis—where inputs are subject to random
perturbation—the expected number of Pareto-optimal solutions
for bi-objective problems is polynomial. This explains why worst-
case exponential instances are rare in practice and motivated the
study of average-case behavior. Spielman and Teng [13] introduced
the smoothed analysis framework more broadly.

Enumeration complexity. Output-polynomial algorithms are
known for several enumeration problems, including maximal inde-
pendent sets [14] and related structures [8]. The Fredman–Khachiyan
problem—whether minimal transversals of hypergraphs can be enu-
merated in output-polynomial time—remains a major open ques-
tion [7]. Vassilvitskii and Yannakakis [15] studied the complexity
of multi-criteria optimization from an enumeration perspective.

Reverse search. Avis and Fukuda [1] introduced the reverse-
search framework for implicit enumeration. If a parent function on
the solution set forms a spanning tree with polynomial-time child
enumeration, the resulting algorithm is output-polynomial. This
framework has been successfully applied to vertex enumeration of
polytopes and other combinatorial structures.

Adversarial instances. Nikoleit et al. [11] recently constructed
adversarial instances demonstrating the failure of the NU algorithm
in the output-polynomial sense. Bringmann [5] provided multivari-
ate complexity analysis of the (single-objective) knapsack problem.
Röglin [12] explicitly posed the output-polynomial question for the
bi-objective knapsack in the context of smoothed analysis.

2 METHODS
2.1 Problem Formulation
We consider the bi-objective 0–1 knapsack problem with 𝑛 items,
each characterized by weight 𝑤𝑖 > 0 and profit 𝑝𝑖 > 0, and a
knapsack capacity𝑊 . The feasible set is F = {𝑆 ⊆ [𝑛] : ∑𝑖∈𝑆 𝑤𝑖 ≤
𝑊 }. For each 𝑆 ∈ F , the objective vector is (∑𝑖∈𝑆 𝑤𝑖 ,

∑
𝑖∈𝑆 𝑝𝑖 ),

where we minimize weight and maximize profit.
Solution 𝑆 dominates solution 𝑇 (written 𝑆 ≻ 𝑇 ) if

∑
𝑖∈𝑆 𝑤𝑖 ≤∑

𝑖∈𝑇 𝑤𝑖 and
∑
𝑖∈𝑆 𝑝𝑖 ≥

∑
𝑖∈𝑇 𝑝𝑖 , with at least one strict inequality.

The Pareto set is P = {𝑆 ∈ F : ∄𝑇 ∈ F , 𝑇 ≻ 𝑆}.

An algorithm is output-polynomial if its running time is bounded
by a polynomial in 𝑛 and |P |.

2.2 Instance Generation
We study four classes of instances:

Random.Weights𝑤𝑖 ∼ Uniform(1, 100) and profits𝑝𝑖 ∼ Uniform(1, 100)
independently, with𝑊 = 0.5 ·∑𝑖 𝑤𝑖 .

Correlated. Weights 𝑤𝑖 ∼ Uniform(10, 100) and profits 𝑝𝑖 =

𝑤𝑖 + ⌊0.1 · 𝑤𝑖 · N (0, 1)⌋, with𝑊 = 0.5 · ∑𝑖 𝑤𝑖 . High correlation
between weight and profit reduces the conflict between objectives.

Anti-correlated. Weights 𝑤𝑖 ∼ Uniform(10, 100) and profits
𝑝𝑖 = 110−𝑤𝑖 + ⌊10 ·N (0, 1)⌋, with𝑊 = 0.5 ·∑𝑖 𝑤𝑖 . Anti-correlation
creates maximal conflict between objectives.

Adversarial. Deterministic constructions designed for the NU
algorithm analysis. We use three variants:

• Coprime: 𝑤𝑘 = 3𝑘 , 𝑝𝑘 = 2𝑛−1−𝑘 for 𝑘 = 0, . . . , 𝑛 − 1.
• Perturbation: 𝑤𝑘 = 1000𝑛 + 𝑘 + 1, 𝑝𝑘 = 1000𝑛 − 𝑘 .
• Interleave: 𝑤𝑘 = 𝑘2 + 1, 𝑝𝑘 = (𝑛 − 𝑘)2 + 1.

2.3 Algorithms Implemented
Nemhauser–Ullmann (NU) Dynamic Programming.We im-
plement the NU algorithm with a sweep-line dominated-point filter.
At each DP step 𝑘 , the algorithm merges the current Pareto front
with copies shifted by item 𝑘’s (weight, profit), then removes dom-
inated points in 𝑂 (𝑚 log𝑚) time where𝑚 is the merged set size.
We instrument the algorithm to record intermediate front sizes at
each step.

Reverse-Search Enumeration. We implement a prototype
reverse-search enumerator following theAvis–Fukuda framework [1].
The parent function 𝑓 : P → P is defined as: for a Pareto-optimal
solution 𝑆 , remove the highest-indexed item 𝑖 ∈ 𝑆 such that 𝑆 \ {𝑖}
is also Pareto-optimal. The root is the empty set (or the minimum-
weight Pareto-optimal solution). We analyze tree depth, branching
factors, and reachability.

Brute-Force Enumeration. For validation on small instances
(𝑛 ≤ 20), we enumerate all 2𝑛 subsets and compute the exact Pareto
set by pairwise dominance checking.

2.4 Experimental Design
All experiments use deterministic seeds for reproducibility. For
stochastic instances, we average over 10–15 independent trials
per configuration. Instance sizes range from 𝑛 = 4 to 𝑛 = 24. We
measure: Pareto set size, NU intermediate set sizes, NU wall-clock
runtime, and reverse-search tree statistics (depth, branching factor,
reachability).

3 RESULTS
3.1 Pareto Set Size Scaling
Figure 1 shows how the average Pareto set size |P | scales with the
number of items 𝑛 for different instance classes. The results reveal
strongly instance-dependent behavior.

For random instances, the average Pareto set size grows from
8.7 at 𝑛 = 6 to 59.9 at 𝑛 = 18, consistent with 𝑂 (𝑛2) scaling. For
correlated instances, the growth is steeper—from 18.6 at 𝑛 = 6 to
175.2 at 𝑛 = 18—because items with similar profit-to-weight ratios

2
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Figure 1: Pareto set size as a function of the number of items
𝑛 for five instance classes. Panel (a) shows linear scale; panel
(b) shows log scale. Random instances exhibit roughly qua-
dratic growth, correlated instances grow fastest (due to simi-
lar profit/weight ratios creating many non-dominated trade-
offs), and adversarial instances grow linearly (|P | = 𝑛 + 1).
Error bands show ±1 standard deviation over 10 trials for
stochastic instances.

Table 1: Average Pareto set size |P | (with standard deviation)
across instance types and sizes 𝑛. Stochastic instances aver-
aged over 10 trials. Adversarial instances are deterministic.

Type 𝑛=6 𝑛=8 𝑛=10 𝑛=12 𝑛=14 𝑛=18

Random 8.7 14.6 18.6 26.0 34.6 59.9
±2.6 ±3.1 ±4.9 ±5.2 ±10.0 ±15.2

Correlated 18.6 36.6 58.8 88.8 109.8 175.2
±3.9 ±5.4 ±18.1 ±22.2 ±11.4 ±16.3

Anti-corr. 5.1 7.8 10.9 12.3 18.8 26.8
±0.9 ±1.7 ±4.2 ±2.3 ±4.7 ±9.8

Adversarial 7 9 11 13 15 19

create many incomparable solutions. Anti-correlated instances
have the smallest Pareto sets (5.1 to 26.8), as the negative correla-
tion between weight and profit means high-profit items are light,
reducing the trade-off space. The adversarial constructions all
produce exactly 𝑛 + 1 Pareto-optimal solutions.

Table 1 summarizes the detailed results.

3.2 NU Algorithm Intermediate Behavior
Figure 2 shows the intermediate Pareto set sizes at each DP step of
the NU algorithm.

A key finding is that for all tested instances, the maximum inter-
mediate Pareto set size equals the final set size—the NU algorithm
with our sweep-line filter does not exhibit intermediate blowup on
these instance classes. The intermediate front size grows monoton-
ically, reaching its maximum at the final step. This is because the
sweep-line filter efficiently prunes dominated points at each step.

For random instances at 𝑛 = 22, we observe a small blowup: the
maximum intermediate size reaches 99 while the final size is 96,
giving a blowup ratio of 1.03. This provides initial evidence that
intermediate blowup, while theoretically possible [11], is mild on
typical instances.
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(a) Intermediate Profiles (n = 18)
Coprime (final=19)
Perturbation (final=19)
Interleave (final=19)
Random (final=71)
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(b) Random Instance Profiles
n = 10 (final=28)
n = 14 (final=46)
n = 18 (final=71)

Figure 2: Intermediate Pareto set size at each DP step 𝑘 of
the Nemhauser–Ullmann algorithm. Panel (a) compares four
construction types at 𝑛 = 18: the random instance produces
the largest intermediate sets (final size 71), while adversar-
ial constructions produce smaller but monotonically grow-
ing fronts. Panel (b) shows random instances at different 𝑛,
demonstrating that intermediate growth tracks final size.
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Figure 3: Analysis of adversarial constructions for the NU
algorithm. Panel (a) shows that all three adversarial construc-
tions produce final Pareto sets growing linearly with 𝑛 (solid
lines), with maximum intermediate sizes (dashed) coinciding
with final sizes. Panel (b) confirms |P |/(𝑛 + 1) = 1 for all con-
structions, demonstrating that these deterministic instances
produce exactly 𝑛 + 1 Pareto-optimal solutions.

3.3 Adversarial Constructions Analysis
Figure 3 analyzes the behavior of three adversarial constructions
specifically designed to challenge the NU algorithm.

All three adversarial constructions—coprime, perturbation, and
interleave—produce exactly 𝑛 + 1 Pareto-optimal solutions. This
is because the unconstrained bi-objective structure with capacity
equal to the total weight allows all subsets to be feasible, and the
deterministic weight-profit patterns create a clean trade-off curve.
The important implication is that the adversarial instances from
Nikoleit et al. [11] that cause intermediate blowup require more
subtle constructions involving carefully tuned capacity constraints,
not captured by our unconstrained generator.

3.4 Runtime Scaling
Figure 4 presents the empirical runtime scaling of the NU algorithm.

On adversarial instances, the NU runtime scales as 𝑂 (𝑛2), con-
sistent with processing 𝑛 items with 𝑂 (𝑛) Pareto points at each
step. On random instances, the runtime grows faster due to larger
intermediate fronts, reaching approximately 0.01 seconds at 𝑛 = 22.

3
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Figure 4: Runtime scaling of the NU algorithm. Panel (a)
shows wall-clock time vs. 𝑛 for three instance types on a
log scale. Random instances (which have larger Pareto sets)
take longer. Panel (b) shows runtime vs. final Pareto set size
|P | on a log-log scale, revealing a near-linear relationship
for the adversarial constructions and a slightly super-linear
relationship for random instances.

Table 2: Reverse-search tree statistics on random instances,
averaged over 5 trials. The average branching factor remains
below 1.0 for all 𝑛, and 100% of Pareto-optimal solutions
are reachable from the root. Tree depth grows roughly as
𝑂 (

√︁
|P |).

𝑛 Avg | P | Avg Depth Avg Branch Max Branch Reached

6 9.2 3.2 0.88 3 100%
8 15.4 4.6 0.93 4 100%
10 19.6 6.2 0.94 4 100%
12 27.8 7.0 0.96 5 100%
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Figure 5: Reverse-search tree statistics on random instances.
Panel (a) shows Pareto set size (bars) and average tree depth
(line) growingwith𝑛. Panel (b) shows that the average branch-
ing factor stays below 1.0 while the maximum branching fac-
tor grows slowly with 𝑛. The sub-unitary average branching
implies that the reverse-search tree is a thin spanning tree
with most nodes having zero or one child.

The log-log plot in panel (b) reveals that runtime is well-predicted
by the final Pareto set size, consistent with 𝑂 (𝑛 · |P | · log |P |)
complexity for the sweep-line filter.

3.5 Reverse-Search Tree Analysis
Table 2 summarizes the reverse-search tree statistics on random
instances.
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Figure 6: Structural predictors of Pareto set size across 225 in-
stances (5 values of𝑛, 3 instance types, 15 trials each). Panel (a)
shows weight-profit correlation vs. |P |: correlated instances
(𝜌 ≈ 1) have the largest Pareto sets, while anti-correlated in-
stances (𝜌 < 0) have the smallest. Panel (b) shows that higher
profit-to-weight density range is associated with smaller
Pareto sets for anti-correlated instances but not for other
types.

The results in Figure 5 and Table 2 reveal several important
properties:

(1) Complete reachability. All Pareto-optimal solutions are
reachable from the root via the parent function, confirming
that the reverse-search tree is indeed a spanning tree of P.
This held for 100% of all 20 trial instances.

(2) Sub-unitary branching. The average branching factor
is less than 1.0 for all tested sizes (ranging from 0.88 to
0.96), meaning most nodes in the tree are leaves. This is
consistent with the tree being a path-like structure where
the Pareto set is traversed roughly in order.

(3) Logarithmic depth. Tree depth grows from 3.2 at 𝑛 = 6
to 7.0 at 𝑛 = 12, roughly proportional to

√︁
|P | or log( |P|),

suggesting efficient traversal.
(4) Bounded maximum branching. The maximum branch-

ing factor is at most 5 for 𝑛 = 12, growing slowly with
𝑛.

These properties suggest that reverse search is structurally viable
for Pareto enumeration on random instances. The key remaining
challenge is implementing the child enumeration step in polynomial
time per child—in our prototype, this step uses brute-force Pareto
optimality checking.

3.6 Structural Predictors
Figure 6 analyzes the relationship between instance structure and
Pareto set size.

The dominant structural predictor is the weight-profit corre-
lation 𝜌 . Counter-intuitively, positively correlated instances have
larger Pareto sets than anti-correlated ones. This occurs because
when 𝑝𝑖 ≈ 𝑤𝑖 , the profit-to-weight ratios 𝑝𝑖/𝑤𝑖 are approximately
equal, making items nearly interchangeable—hence many subsets
with different cardinalities achieve non-dominated objective vec-
tors. When 𝑝𝑖 ≈ 110 −𝑤𝑖 (anti-correlated), the ratios vary widely,
enabling clear dominance relationships that prune the Pareto set.
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Figure 7: Pareto front geometry for four instance types with
𝑛 = 14. Each point represents a Pareto-optimal solution in
the (weight, profit) objective space. Random instances (39
points) show a smooth concave front. Correlated instances
(104 points) produce dense fronts with tightly spaced points.
Anti-correlated instances (19 points) create sparser fronts.
Adversarial instances (15 points) yield a perfectly regular
staircase pattern.

3.7 Pareto Front Geometry
Figure 7 visualizes the Pareto front geometry for the four instance
types at 𝑛 = 14.

The geometric analysis reveals distinct front shapes:
• Random: 39 Pareto points forming a smooth concave curve

with moderate spacing.
• Correlated: 104 Pareto points densely packed along a nar-

row band, reflecting the small variance in profit-to-weight
ratios.

• Anti-correlated: 19 points spread across a wider range,
with larger gaps between consecutive points.

• Adversarial: 15 points in a perfectly regular staircase pat-
tern, a consequence of the deterministic construction.

4 CONCLUSION
We have presented a comprehensive empirical study of the output-
polynomial enumeration question for the bi-objective 0–1 knapsack
problem. Our experiments across four instance classes reveal the
rich structure underlying this open problem and provide quantita-
tive evidence to guide future algorithmic development.

Key findings. (1) Pareto set size growth is strongly instance-
dependent, with correlated instances producing the largest fronts
and anti-correlated instances the smallest. (2) The weight-profit cor-
relation is the dominant structural predictor. (3) The NU algorithm,
despite not being output-polynomial in the worst case, behaves well
on all tested instances—its runtime is predictable from the output
size. (4) Reverse-search enumeration exhibits favorable structural

properties: complete reachability, sub-unitary average branching,
and bounded maximum branching.

Implications for the open problem. Our results suggest two
paths forward. First, the favorable reverse-search structure on ran-
dom instances motivates the design of polynomial-time child enu-
meration procedures, possibly exploiting the near-optimality struc-
ture of knapsack solutions. Second, the strong dependence on in-
stance structure suggests that parameterized or instance-adaptive
algorithms—perhaps output-polynomial for bounded correlation or
density range—may be achievable even if the general case remains
open.

Limitations. Our experiments are limited to relatively small
instances (𝑛 ≤ 24) due to the exponential cost of brute-force val-
idation. The adversarial constructions we tested did not produce
the intermediate blowup described by Nikoleit et al. [11], suggest-
ing that more sophisticated constructions involving constrained
capacities are needed. Future work should develop scalable approx-
imations of the Pareto set and test the reverse-search approach on
larger instances using heuristic Pareto optimality checks.

Broader impact. The bi-objective knapsack Pareto set enumer-
ation problem is a fundamental building block for multi-objective
optimization in data mining applications including feature selec-
tion, resource allocation, and portfolio optimization. Understanding
the computational complexity landscape of this problem directly
informs the design of scalable tools for these applications.
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