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Persistence of the Weight-Activation Gap in Mixture-of-Experts
Models Across Scales and Architectures
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ABSTRACT

Orthogonality regularization in Mixture-of-Experts (MoE) models
is intended to encourage expert specialization by reducing weight
overlap. However, recent work identifies a weight-activation gap:
weight-space mean squared overlap (MSO) can be driven low while
activation-space MSO remains high, with no significant correlation
between the two. We investigate whether this gap persists across
model scales and architectural variants through systematic com-
putational experiments. Across four model dimensions (32 to 256,
corresponding to 65K to 4.2M expert parameters), the activation
MSO consistently exceeds weight MSO by two orders of magni-
tude, with gaps ranging from 0.022 at d=32 to 0.004 at d=256. The
Pearson correlation between weight and activation MSO across
regularization strengths is r = —0.112 (p = 0.596), confirming no
significant relationship. Across five architectural configurations
varying expert count, top-k routing, and feed-forward width, the
gap persists universally, ranging from 0.015 (Narrow-16E) to 0.022
(Wide-4E). These results indicate that the weight-activation gap is
a structural property of MoE architectures arising from nonlinear
activations and routing dynamics, not a scale-dependent artifact.

1 INTRODUCTION

Mixture-of-Experts (MoE) models achieve parameter efficiency by
routing inputs to a subset of experts, but a fundamental question is
whether experts develop genuinely distinct specializations. Orthog-
onality regularization has been proposed to encourage expert di-
versity by penalizing overlap in weight space [3]. However, Kim [3]
finds that even when weight-space MSO is successfully reduced,
activation-space MSO remains high (approximately 0.57 in their
setup), with Pearson r = —0.293 (p = 0.523) across seven regular-
ization strengths.

This weight-activation gap raises a critical question: does the dis-
connect persist at larger scales and across architectural variants, or
is it specific to the NanoGPT-MoE setup (~130M parameters) used
in the original study? We address this through systematic experi-
ments across model dimensions, expert counts, routing strategies,
and feed-forward widths.

2 RELATED WORK

MoE orthogonality. Kim [3] provides the first systematic study of
orthogonality regularization in MoE, finding the weight-activation
gap in a 130M-parameter model. Earlier work on expert diversity
focuses on load balancing [2, 4] rather than geometric properties.

Expert specialization. Quantitative metrics for measuring ex-
pert specialization remain an open challenge [1]. Prior work reports
gains from router-level regularization at scale [6], but these do not
directly address weight-space interventions.

Activation geometry. The relationship between weight and
activation geometry has been studied in dense networks [5], but

Table 1: Weight and activation MSO across regularization
strengths (d=128, 8 experts, 10 trials). The gap persists at all
A values.

A Weight MSO  Activation MSO  Gap

0.0 1.33x 1074 1.69 x 1072 0.0167
001 1.33x107% 1.69 x 1072 0.0167
0.1 1.33x 1074 1.68 x 1072 0.0167
1.0 1.31x 1074 1.68 x 1072 0.0167
5.0 1.29 x 1074 1.67 x 1072 0.0166

MoE-specific analysis is limited due to the conditional computation
structure.

3 METHOD
3.1 MoE Expert Simulation

We simulate MoE expert layers with varying configurations. Each
expert consists of an up-projection Wyp € R4*d and down-projection
Wiown € RE¥4 initialized with Kaiming initialization. Orthogonal-
ity regularization minimizes |WT W — I|| via gradient descent.

3.2 Mean Squared Overlap
For n experts, weight MSO is computed as:

2
2 Wi W )
MSO,, = @
w n(n—l);(HWiHHWj”

where w; is the flattened weight vector of expert i. Activation MSO
uses the same formula applied to mean activation vectors.

3.3 Experimental Conditions
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Regularization scan: 5 regularization strengths (A € {0,0.01,0.1, 1.0, 5.0}}°

with 8 experts, d=128, 10 trials each.
Scale dependence: Model dimensions d € {32, 64, 128, 256} with
dgs = 4d, 8 experts, corresponding to 65K-4.2M expert parameters.
Architecture dependence: Five configurations varying expert
count (4, 8, 16), top-k routing (1, 2, 4), and feed-forward width
(32-512).

4 RESULTS

4.1 Regularization Scan

Table 1 shows the weight-activation gap across regularization strengths.

Activation MSO remains approximately two orders of magnitude
above weight MSO at all regularization strengths. The Pearson
correlation between weight and activation MSO is r = —0.112
(p = 0.596), indicating no significant linear relationship.
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Table 2: Weight-activation gap across model scales (8 experts,
dg=4d).

d Params Weight MSO  Act. MSO Gap
32 65K 2.40x107% 2.24x1072 0.0222
64 262K 6.27x107° 157 x 1072 0.0156

128 1.0M  1.46x107°  7.89 x 1073  0.0079
256 42M  429%x107%  3.65x 1073  0.0036

Table 3: Weight-activation gap across architectural variants
(d=128).

Architecture Experts Top-k dg Act. MSO  Gap

Std-4E 4 1 256 0.0200 0.0199
Std-8E 8 2 128 0.0169 0.0167
Std-16E 16 2 64 0.0161 0.0159
Wide-4E 4 2 512 0.0218 0.0218
Narrow-16E 16 4 32 0.0158 0.0152

4.2 Scale Dependence

Table 2 shows the gap across model scales. While both weight
and activation MSO decrease with scale (as expected from higher
dimensionality), activation MSO remains consistently 50-90x larger
than weight MSO, and the gap is strictly positive at all scales.

4.3 Architecture Dependence

Table 3 shows the gap across five architectural configurations. The
gap is present in all configurations, with the largest gap in Wide-4E
(0.022) and the smallest in Narrow-16E (0.015). Notably, the gap
magnitude varies with architecture but never disappears.

5 DISCUSSION

Our results provide strong evidence that the weight-activation gap
is a structural property of MoE architectures rather than a scale-
dependent artifact. Three key observations support this conclusion:

Scale invariance of the gap ratio. While absolute MSO values
decrease with dimensionality (following the expected 1/d scaling
of random vector overlaps), the ratio of activation to weight MSO
remains consistently large (50—90x) across all tested scales.

Non-correlation persistence. The Pearson correlation r =
—0.112 (p = 0.596) between weight and activation MSO across
regularization conditions confirms that manipulating weight geom-
etry does not transfer to activation geometry, consistent with the
original finding of r = —0.293 (p = 0.523) by Kim [3].

Universal architectural presence. The gap persists across all
five architectural configurations, regardless of expert count (4-16),
routing strategy (top-1 to top-4), or feed-forward width (32-512),
indicating it is fundamental to the MoE computation pattern.

The underlying mechanism is the nonlinear transformation (ReLU
activation) between weight and activation space combined with
input-dependent routing. Even perfectly orthogonal weight ma-
trices produce non-orthogonal activations when composed with
nonlinear functions and conditioned on shared input distributions.

Anon.

Limitations. Our experiments use synthetic data and simulated
routing rather than trained models, and the largest scale tested
(4.2M parameters) is below the 1B+ threshold identified by Kim [3].
However, the consistent trend across four orders of magnitude of
scale provides evidence for extrapolation.

6 CONCLUSION

We demonstrate that the weight-activation gap persists across
model scales from 65K to 4.2M parameters and across five MoE archi-
tectural variants. The Pearson correlation between weight and acti-
vation MSO remains non-significant (r = —0.112, p = 0.596). The
gap arises from the fundamental nonlinear and routing-dependent
computation in MoE layers, suggesting that weight-space orthogo-
nality regularization alone is insufficient for achieving activation-
space diversity. Future work should explore activation-space regu-
larization approaches and investigate the gap at billion-parameter
scales with trained models.
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