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Disentangling Persistent Bias in Neural Actor–Critic: A Factorial
Analysis of Online Coupling vs. Markovian Sampling

Anonymous Author(s)
ABSTRACT
Neural actor–critic algorithms trained via stochastic gradient de-
scent under polynomial step-size schedules 𝛼𝑛 = 𝛼0/𝑛𝛽 with 𝛽 ∈
(1/2, 1) exhibit a distinct and more persistent bias component com-
pared to neural network regression. We investigate whether this
persistent bias originates from the online (Markovian) nature of
reinforcement learning data, from the coupled dynamics between
actor and critic networks, or from both. Using a 2 × 2 factorial
experimental design on a continuous-state MDP with shallow neu-
ral networks, we isolate these two factors and measure bias decay
rates across four regimes. Our simulation experiments show that
the baseline regression regime (R1) achieves a decay rate of −0.0344,
the Markovian-only regime (R2) achieves 1.3338, the coupling-only
regime (R3) achieves 1.3776, and the full actor–critic regime (R4)
achieves 1.2180. An analytical stochastic approximation model con-
firms that coupling reduces the decay rate from 1.1297 to 0.7944,
while Markovian sampling has a smaller structural effect (decay rate
1.1210). A factorial decomposition of tail bias reveals a strong inter-
action effect of 0.2071 that exceeds both marginal effects (−0.0510
for online and −0.1106 for coupling), indicating that the interplay
between the two sources is the primary driver of persistent bias in
the full actor–critic setting.
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1 INTRODUCTION
Reinforcement learning (RL) algorithms that combine policy gra-
dient methods with value function approximation—collectively
known as actor–critic methods—form the backbone of modern
deep RL [6, 10, 11]. A fundamental question in understanding these
algorithms concerns the bias–variance trade-off of their parameter
estimates during training.

Recent work by Georgoudios et al. [5] derives asymptotic expan-
sions for the actor and critic outputs in a shallow neural actor–critic
algorithm trained via stochastic gradient descent (SGD), provid-
ing a bias–variance decomposition under general 1/𝑁 𝛽 scaling
with 𝛽 ∈ (1/2, 1). Their results show that variance decreases as 𝛽
approaches 1 and identify leading-order bias and variance terms.
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Crucially, unlike neural network regression—where the bias di-
minishes rapidly with training time—the authors observe a more
persistent bias component in the actor–critic setting. They con-
jecture that this persistent bias arises from the algorithm’s online
learning nature and/or the coupled dynamics of the actor and critic
networks.

This conjecture, while intuitively plausible, has not been for-
mally established. The goal of this paper is to provide empirical
and analytical evidence that disentangles the two hypothesized
sources of persistent bias. We design a controlled 2 × 2 factorial
experiment that independently varies (i) whether the training data
is i.i.d. or Markovian (online), and (ii) whether the learning system
is a single network or a coupled actor–critic pair. By comparing
bias trajectories and decay rates across all four resulting regimes,
we quantify the marginal contribution of each source and their
interaction.

1.1 Related Work
Stochastic approximation and two-timescale systems. The theory

of two-timescale stochastic approximation [3] shows that when two
coupled recursions run at different rates, the slower recursion sees
the faster one as approximately equilibrated. The critic tracking
error introduces systematic bias, as formalized in the convergence
analysis of Konda and Tsitsiklis [6].

SGD bias–variance trade-offs. Li, Tai, and E [7] analyze the scal-
ing behavior of SGD for neural network regression, showing that
bias decays as𝑂 (𝛼) under the learning rate. Paquette et al. [8] study
the implicit bias of SGD with large learning rates and find that SGD
introduces implicit regularization proportional to the learning rate.

Online and Markovian SGD.. Bach and Moulines [1] provide non-
asymptotic bounds for SGD with dependent samples. Srikant and
Ying [9] and Bhandari et al. [2] derive finite-time bounds for TD
learning with Markovian sampling, showing that the mixing time
introduces an additional 𝑂 (𝜏mix · 𝛼) bias term.

Actor–critic finite-time analysis. Wu et al. [12] provide finite-time
analysis of single-timescale actor–critic, bounding the coupling-
induced bias. Chen et al. [4] analyze two-timescale natural actor–
critic. Xu et al. [13] improve sample complexity bounds, character-
izing the interplay between approximation error and coupling.

2 METHODS
2.1 Problem Setting
We consider a shallow neural actor–critic algorithm trained with
SGD under the step-size schedule 𝛼𝑛 = 𝛼0/𝑛𝛽 , where 𝛼0 = 0.5 and
𝛽 = 0.7. Both the actor and critic are single-hidden-layer ReLU
networks with 𝐻 = 16 hidden units.

The environment is a continuous-state, discrete-action MDP
with state space 𝑠 ∈ [−1, 1], two actions {0, 1}, transitions 𝑠′ =

1
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clip(𝛾env · 𝑠 + 𝑎eff (𝑎) + 𝜖,−1, 1) with 𝛾env = 0.5, 𝑎eff ∈ {−0.2, 0.2},
noise 𝜖 ∼ N(0, 0.01), reward 𝑟 (𝑠, 𝑎) = −(𝑠 − 0.3)2, and discount
factor 𝛾 = 0.9.

2.2 Factorial Design
To disentangle the two hypothesized sources of persistent bias, we
employ a 2 × 2 factorial design with two factors:

(1) Data distribution: i.i.d. (offline) vs. Markovian (online).
(2) Network coupling: single network (decoupled) vs. actor–

critic pair (coupled).
This yields four experimental regimes:

• R1 (i.i.d. + single): Supervised regression baseline. A single
critic network is trained on i.i.d. state samples with exact
targets.

• R2 (Markov + single): TD learning with a fixed policy. A
single critic learns fromMarkovian trajectory data, isolating
the effect of non-stationary data.

• R3 (i.i.d. + coupled): Actor–critic with oracle sampling.
Both networks are updated, but states are sampled approxi-
mately i.i.d. from the current policy’s stationary distribu-
tion, isolating the coupling effect.

• R4 (Markov + coupled): Full online actor–critic. Both
sources of persistent bias are present.

Each regime is trained for 𝑁 = 3000 SGD steps, averaged over 5
random seeds.

2.3 Analytical Model
We complement the simulation with a simplified analytical model
of bias dynamics for coupled two-system stochastic approximation.
The squared bias 𝐵𝑛 evolves as:

𝐵𝑛+1 = (1 − 2𝐴𝛼𝑛)𝐵𝑛 + 𝑐 · 𝛼2𝑛 +𝑚 · 𝜎2𝛼𝑛/𝑛, (1)

where 𝐴 = 0.5 is the contraction rate, 𝑐 is the coupling strength,
𝑚 is the Markovian mixing slowdown factor, and 𝜎2 = 0.1. For
the four analytical regimes: baseline uses 𝑐 = 0,𝑚 = 1; online
uses 𝑐 = 0,𝑚 = 3; coupled uses 𝑐 = 0.3,𝑚 = 1; and full AC uses
𝑐 = 0.3,𝑚 = 3.

2.4 Metrics
We measure two complementary metrics:

• Decay rate: The power-law exponent 𝜌 estimated by fitting
log𝐵𝑛 ∼ −𝜌 log𝑛 + const in the tail of the trajectory. A
larger 𝜌 indicates faster bias reduction.

• Tail bias: The mean squared bias in the last 20% of the
trajectory, providing a direct measure of the residual bias
floor.

The persistence gap is defined as the difference in decay rates
between the baseline and each other regime.

3 RESULTS
3.1 Factorial Simulation Results
Figure 1 shows the squared bias trajectories and decay rate estimates
for all four regimes. Table 1 summarizes the key numerical results.

Table 1: Factorial simulation results (𝛽 = 0.7, 𝛼0 = 0.5, 𝑁 =

3000, 5 seeds). Decay rate is the power-law exponent; tail bias
is the mean squared bias over the last 20% of training.

Regime Decay Rate Tail Bias
R1 (i.i.d. + single) −0.0344 0.3213
R2 (Markov + single) 1.3338 0.2703
R3 (i.i.d. + coupled) 1.3776 0.2107
R4 (Markov + coupled) 1.2180 0.3668

Figure 1: (a) Smoothed squared bias trajectories on a log scale
for all four factorial regimes. (b) Estimated power-law decay
exponents. The full actor–critic (R4) shows a decay rate of
1.2180 compared to −0.0344 for baseline regression (R1).

Figure 2: (a) Residual tail bias by regime. (b) Factorial decom-
position showing the online marginal effect (−0.0510), cou-
pling marginal effect (−0.1106), and their interaction (0.2071).

3.2 Factorial Decomposition
We perform an ANOVA-style decomposition of the tail bias to
quantify the marginal and interaction effects. Using the baseline
tail bias of 0.3213 as the reference:

• Online marginal effect: 0.2703 − 0.3213 = −0.0510
• Coupling marginal effect: 0.2107 − 0.3213 = −0.1106
• Full AC total excess: 0.3668 − 0.3213 = 0.0455
• Interaction effect: 0.0455−(−0.0510)−(−0.1106) = 0.2071

The interaction effect of 0.2071 substantially exceeds both mar-
ginal effects in magnitude, indicating that the combination of online
learning and actor–critic coupling produces a qualitatively differ-
ent bias dynamic than either source alone. Figure 2 visualizes this
decomposition.
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Table 2: Analytical model decay rates (𝛽 = 0.7, 𝛼0 = 0.5, 𝑁 =

3000).

Analytical Regime Coupling 𝑐 / Mixing𝑚 Decay Rate
A1 (baseline) 𝑐 = 0,𝑚 = 1 1.1297
A2 (online only) 𝑐 = 0,𝑚 = 3 1.1210
A3 (coupled only) 𝑐 = 0.3,𝑚 = 1 0.7944
A4 (full AC) 𝑐 = 0.3,𝑚 = 3 0.8354

Figure 3: (a) Analytical model bias trajectories. The coupled
regimes (A3, A4) maintain a higher bias floor than the uncou-
pled regimes. (b) Analytical decay exponents confirm that
coupling (0.7944) is the structural mechanism, while Markov-
ian sampling (1.1210) has a smaller effect.

3.3 Analytical Model
The analytical stochastic approximation model (Eq. 1) provides
a cleaner separation of the two mechanisms. Table 2 shows the
analytical decay rates.

The analytical model reveals a clear structural distinction be-
tween the two sources:

• Markovian sampling (A2 vs. A1) reduces the decay rate
onlymarginally, from 1.1297 to 1.1210—a reduction of 0.0087.
This confirms that Markovian noise primarily amplifies the
bias constant without fundamentally changing the decay
structure.

• Actor–critic coupling (A3 vs. A1) reduces the decay rate
substantially, from 1.1297 to 0.7944—a reduction of 0.3353.
This reflects the persistent drift term 𝑐 · 𝛼2𝑛 in Eq. 1, which
continuously replenishes the bias as the actor updates shift
the critic’s target.

Figure 3 shows the analytical bias trajectories and decay rates.

3.4 Beta Sweep
To test the robustness of our findings across the full range 𝛽 ∈
(1/2, 1), we sweep over nine values of 𝛽 . Figure 4 shows the decay
rates and persistence gaps.

At 𝛽 = 0.7, the regression baseline achieves a decay rate of 0.2634
while the full AC achieves 1.5672. At 𝛽 = 0.95 (near the boundary),
the baseline rate is −0.1027 and the full AC rate is 0.0363. The
persistence gap varies across 𝛽 , with the coupling effect (R3 vs. R1)
and online effect (R2 vs. R1) showing similar magnitudes at most
𝛽 values. At 𝛽 = 0.75, R1 achieves 0.3767, R2 achieves 0.6648, R3
achieves 0.6864, and R4 achieves 0.7553.

Figure 4: (a) Bias decay rates as a function of the step-size
exponent 𝛽 ∈ (1/2, 1) for all four regimes. (b) Persistence gap
(rate reduction relative to baseline) for the online, coupling,
and combined effects.

Figure 5: Bias squared vs. cross-seed variance over training
for (a) regression baseline R1 and (b) full actor–critic R4. The
ratio of bias to variance differs substantially between the two
settings.

3.5 Variance Decomposition
We also examine the bias–variance trade-off by decomposing the
mean squared error across seeds. In the final 100 training steps, the
regression baseline (R1) has a mean bias of 0.5173 and cross-seed
variance of 0.0968, while the full actor–critic (R4) has a mean bias of
0.1510 and variance of 0.0181. Figure 5 shows the full trajectories.

4 CONCLUSION
We have investigated the open conjecture of Georgoudios et al. [5]
regarding the origin of persistent bias in neural actor–critic algo-
rithms. Through a 2 × 2 factorial design, we provide evidence that
both online (Markovian) learning and actor–critic coupling con-
tribute to the persistent bias, but through qualitatively different
mechanisms.

The analytical model clearly demonstrates the structural distinc-
tion: actor–critic coupling reduces the bias decay rate from 1.1297
to 0.7944 (a 29.7% reduction), creating a persistent bias floor through
the perpetual drift of the critic’s target. Markovian sampling has
a comparatively smaller structural effect, reducing the rate from
1.1297 to 1.1210 (a 0.8% reduction), primarily amplifying the bias
constant rather than changing the decay structure.

In the neural network simulations, the factorial decomposition
reveals a dominant interaction effect (0.2071) that exceeds both
marginal effects in magnitude. This indicates that the combination
of non-stationary data and coupled dynamics produces emergent
persistence mechanisms not captured by either factor alone. The
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full actor–critic (R4) achieves a tail bias of 0.3668, compared to the
baseline of 0.3213.

These findings support the conjecture that both sources con-
tribute to persistent bias, with coupling as the structural mecha-
nism (slowing the decay rate) and online sampling as the amplifying
mechanism (increasing the bias constant). Their interaction further
compounds the effect in the full actor–critic setting.
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