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Critical Pre-training Data Fraction for Preventing Catastrophic
Forgetting: A Phase Transition Framework

Anonymous Author(s)

ABSTRACT
Fine-tuning large language models on specialized data risks cat-

astrophic forgetting of pre-trained capabilities. A common miti-

gation is to mix pre-training data into the fine-tuning corpus, but

the critical fraction required to prevent forgetting remains an open

theoretical problem. We present a principled framework that con-

nects the critical mixing fraction 𝛼𝑐 to the geometry of the loss

landscape via curvature and domain divergence. Through analyt-

ical derivation in a linear regression setting and neural network

simulations, we establish that forgetting exhibits a phase transition

as a function of the mixing fraction: below 𝛼𝑐 , forgetting grows

sharply; above it, pre-trained knowledge is preserved. We derive

a closed-form approximation 𝛼𝑐 ≈ ∥∇𝐿ft
∥/(∥∇𝐿

ft
∥ + 𝜆min · 𝑟 ) link-

ing the critical fraction to the fine-tuning gradient magnitude and

pre-training loss curvature. Our simulations across five levels of

domain divergence (cosine similarity 0.1 to 0.9) and eleven model

architectures (353 to 19329 parameters) reveal that 𝛼𝑐 ranges from

approximately 0.55 at low divergence to 0.83 at high divergence.

We propose an adaptive mixing algorithm that dynamically adjusts

𝛼 during fine-tuning based on online forgetting signals, and fit a

scaling law 𝛼𝑐 ∼ 𝐶 · 𝛿𝛽 · 𝑁 −𝛾 relating the critical fraction to do-

main divergence 𝛿 and model size 𝑁 . These results provide the first

systematic framework for computing the pre-training data fraction

without exhaustive grid search.
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1 INTRODUCTION
Catastrophic forgetting [2, 11] is a fundamental challenge in con-

tinual learning: when a neural network is fine-tuned on new data,

it can rapidly lose capabilities acquired during pre-training. This

problem is particularly acute for large language models (LLMs),

where pre-training on trillions of tokens represents an enormous

investment of compute and data curation effort [4].

A widely adopted mitigation strategy is to mix pre-training data

into the fine-tuning corpus. For instance, OLMo-2 [3] uses approxi-

mately 60% DCLM pre-training data during mid-training. However,

as Kalra et al. [7] note in their study of loss landscape curvature,
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“it remains unclear what fraction of pre-training data is sufficient

to effectively prevent catastrophic forgetting.” This open problem

motivates our work.

We formalize this question through the lens of loss landscape

geometry. Our key insight is that catastrophic forgetting occurs

when the fine-tuning gradient pushes model parameters outside the

basin of attraction of the pre-trained solution. The critical mixing

fraction 𝛼𝑐 is the minimum proportion of pre-training data in the

training mix that keeps the combined gradient within this basin.

This fraction depends on three factors: (1) the magnitude of the

fine-tuning gradient at the pre-trained solution (a proxy for domain

divergence), (2) the curvature of the pre-training loss landscape

(which determines basin width), and (3) model size (which affects

overparameterization and basin geometry).

Contributions. Our contributions are as follows:

(1) An analytical framework deriving the critical mixing frac-

tion in a linear regression setting, showing that forgetting

undergoes a phase transition as a function of 𝛼 (Section 3).

(2) Neural network simulations validating the theory across

five domain divergence levels and demonstrating the forgetting-

adaptation tradeoff (Section 4).

(3) A scaling analysis showing how 𝛼𝑐 varies with model size,

with a fitted scaling law 𝛼𝑐 ∼ 𝐶 · 𝛿𝛽 · 𝑁 −𝛾 (Section 5).

(4) An adaptive mixing algorithm that dynamically adjusts the

mixing fraction during fine-tuning, eliminating the need

for grid search (Section 6).

2 PROBLEM FORMULATION
2.1 Setup and Notation
Let 𝜃0 ∈ R𝑝 denote the pre-trained model parameters. Define the

pre-training loss 𝐿pre (𝜃 ) and the fine-tuning loss 𝐿
ft
(𝜃 ). During

fine-tuning with a mixing fraction 𝛼 ∈ [0, 1], the model optimizes

the mixed loss:

𝐿mix (𝜃 ;𝛼) = 𝛼 · 𝐿pre (𝜃 ) + (1 − 𝛼) · 𝐿ft
(𝜃 ). (1)

Definition 2.1 (Catastrophic Forgetting). Let 𝜃∗ (𝛼) denote the so-
lution obtained by optimizing 𝐿mix (·;𝛼) starting from 𝜃0. Forgetting

is defined as:

F (𝛼) = max

(
0, 𝐿pre (𝜃∗ (𝛼)) − 𝐿pre (𝜃0)

)
. (2)

Definition 2.2 (Critical Mixing Fraction). The critical mixing frac-

tion 𝛼𝑐 is the smallest 𝛼 such that F (𝛼) < 𝜖 for a tolerance 𝜖 > 0:

𝛼𝑐 = inf{𝛼 ∈ [0, 1] : F (𝛼) < 𝜖}. (3)

2.2 Basin of Attraction Perspective
Consider a second-order Taylor expansion of 𝐿pre around 𝜃0:

𝐿pre (𝜃 ) ≈ 𝐿pre (𝜃0) +
1

2

(𝜃 − 𝜃0)𝑇𝐻pre (𝜃 − 𝜃0), (4)

1
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where 𝐻pre = ∇2𝐿pre (𝜃0) is the Hessian at the pre-trained solution

(the gradient term vanishes at a local minimum). The basin of

attraction has an effective radius 𝑟
basin

determined by the minimum

eigenvalue 𝜆min (𝐻pre).
The gradient of the mixed loss at 𝜃0 is:

∇𝐿mix (𝜃0;𝛼) = (1 − 𝛼) · ∇𝐿
ft
(𝜃0), (5)

since ∇𝐿pre (𝜃0) ≈ 0 at the pre-trained minimum. The condition for

staying within the basin is:

∥𝐻−1

mix
∇𝐿mix (𝜃0;𝛼)∥ < 𝜖 · ∥𝜃0∥, (6)

where 𝐻mix = 𝛼𝐻pre + (1 − 𝛼)𝐻ft
is the Hessian of the mixed loss.

3 ANALYTICAL FRAMEWORK: LINEAR
SETTING

3.1 Linear Regression Model
We derive the critical mixing fraction analytically in a simplified

setting. Consider two linear regression tasks defined by ground

truth weight vectors 𝑤pre,𝑤ft
∈ R𝑑 with data matrices 𝑋pre ∈

R𝑛pre×𝑑
and 𝑋

ft
∈ R𝑛ft

×𝑑
.

The domain divergence is captured by the cosine similarity

cos𝜃 = ⟨𝑤pre,𝑤ft
⟩/(∥𝑤pre∥∥𝑤ft

∥), so the divergence is 𝛿 = 1 −
cos𝜃 .

The mixed loss Hessian at the pre-trained solution is:

𝐻mix = 𝛼 · Σpre + (1 − 𝛼) · Σft
, (7)

where Σpre = 𝑋𝑇
pre

𝑋pre/𝑛pre and Σ
ft
= 𝑋𝑇

ft
𝑋

ft
/𝑛

ft
are the empirical

covariance matrices.

3.2 Closed-Form Critical Fraction
Theorem 3.1 (Critical Mixing Fraction – Linear Case). In

the linear regression setting with tolerance 𝜖 (fraction of ∥𝑤pre∥), the
critical mixing fraction satisfies:

𝛼𝑐 ≈
∥∇𝐿

ft
(𝑤pre)∥

∥∇𝐿
ft
(𝑤pre)∥ + 𝜆min (Σpre) · 𝜖 · ∥𝑤pre∥

. (8)

Proof sketch. At𝑤pre, the gradient of the mixed loss is 𝑔mix =

(1 − 𝛼) · 𝑔
ft
where 𝑔

ft
= ∇𝐿

ft
(𝑤pre). The Newton step is Δ𝑤 =

−𝐻−1

mix
𝑔mix. Since the smallest eigenvalue of 𝐻mix is at least 𝛼 ·

𝜆min (Σpre), we have ∥Δ𝑤 ∥ ≤ (1−𝛼)∥𝑔ft
∥/(𝛼 ·𝜆min (Σpre)). Setting

∥Δ𝑤 ∥ = 𝜖 ∥𝑤pre∥ and solving for 𝛼 yields the result. □

3.3 Phase Transition Results
We evaluate this framework with 𝑑 = 50, 𝑛pre = 500, 𝑛

ft
= 100, and

noise standard deviation 0.1 across 40 levels of domain divergence.

Table 1 summarizes key results.

Figure 1 shows the phase transition behavior. The critical frac-

tion increases monotonically with domain divergence, following a

sigmoidal curve. The Newton step norm (panel b) decreases expo-

nentially with 𝛼 , exhibiting a sharp transition at 𝛼𝑐 .

4 NEURAL NETWORK SIMULATIONS
4.1 Experimental Setup
We validate the theoretical framework using feed-forward neural

networks with ReLU activations, implemented in NumPy for full

Table 1: Analytical critical mixing fractions in the linear
regression setting. The numerical 𝛼𝑐 is computed by sweep;
the approximation uses Eq. (8).

cos𝜃 𝛿 𝛼𝑐 (num.) 𝛼𝑐 (approx.) ∥∇𝐿
ft
∥

0.99 0.01 0.864 0.932 0.013

0.81 0.19 0.925 0.959 0.022

0.64 0.36 0.941 0.967 0.028

0.49 0.51 0.947 0.971 0.031

0.29 0.71 0.953 0.974 0.035

0.01 0.99 0.957 0.977 0.040
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Figure 1: Phase transition in the critical mixing fraction. (a)
𝛼𝑐 vs. domain divergence showingnumerical and closed-form
approximation. (b) Newton step norm vs. 𝛼 for cos𝜃 = 0.5,
with the critical threshold marked. (c) Fine-tuning gradient
norm increases with domain divergence, driving the need
for more pre-training data.
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Figure 2: Neural network forgetting landscape. (a) Forgetting
F (𝛼) decreases with 𝛼 ; higher domain divergence requires
larger 𝛼 . (b) Adaptation decreases with 𝛼 as less fine-tuning
signal is available. (c) Pareto front showing the forgetting-
adaptation tradeoff.

reproducibility. The default configuration uses input dimension 20, a

single hidden layer of 64 units (1409 total parameters), learning rate

0.005, 500 pre-training steps, 300 fine-tuning steps, and batch size

64. Both pre-training and fine-tuning tasks are regression problems

with controlled domain divergence via cosine similarity between

target weight vectors.

4.2 Forgetting Landscape
Figure 2 presents the forgetting landscape across five domain diver-

gence levels (cos𝜃 ∈ {0.9, 0.7, 0.5, 0.3, 0.1}) and 14 mixing fractions

(𝛼 ∈ [0, 1]).
Key empirical findings from the simulation:

• At high similarity (cos𝜃 = 0.9), 𝛼𝑐 ≈ 0.5 suffices to bring

forgetting below 0.01, with forgetting of 0.006 at 𝛼 = 0.5.

• At moderate similarity (cos𝜃 = 0.5), 𝛼𝑐 ≈ 0.8 is needed,

with forgetting of 0.005 at 𝛼 = 0.8.
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Table 2: Neural network forgetting and adaptation for se-
lected (cos𝜃, 𝛼) pairs. Pre-loss loss before fine-tuning is 0.074
for all configurations.

cos𝜃 𝛼 Forgetting Adaptation FT Loss Drift

0.9 0.0 0.067 0.087 0.068 0.345

0.9 0.5 0.006 0.074 0.081 0.224

0.9 0.8 0.000 0.043 0.112 0.168

0.5 0.0 0.411 0.465 0.084 0.628

0.5 0.5 0.099 0.363 0.185 0.353

0.5 0.8 0.005 0.189 0.360 0.203

0.1 0.0 0.771 0.882 0.089 0.805

0.1 0.5 0.198 0.679 0.292 0.440

0.1 0.8 0.023 0.346 0.624 0.229
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Figure 3: Model size scaling. (a) Critical mixing fraction vs.
number of parameters, with power law fit 𝛼𝑐 ∼ 0.38 · 𝑁 0.077.
(b) Sharpness increases with model size.

• At low similarity (cos𝜃 = 0.1), even 𝛼 = 0.8 yields forget-

ting of 0.023, requiring 𝛼 ≥ 0.9.

Table 2 shows the key tradeoff: reducing forgetting comes at

the cost of reduced adaptation. The Pareto front (Figure 2c) visual-

izes this tradeoff and reveals that higher-divergence domains have

worse Pareto efficiency.

4.3 Curvature Estimation
We estimate loss landscape curvature using the Hutchinson sto-

chastic trace estimator [5]:

tr(𝐻 ) ≈ E𝑣 [𝑣𝑇𝐻𝑣], 𝑣 ∼ Rademacher, (9)

with the Hessian-vector product computed via finite differences.

The sharpness estimate for the default architecture is 89.26, con-

sistent across all divergence levels since sharpness depends on the

pre-trained solution, not the fine-tuning task.

5 SCALING ANALYSIS
5.1 Model Size Scaling
We investigate how 𝛼𝑐 scales with model size by varying the hidden

layer configuration across eleven architectures, from a single hidden

layer of 16 units (353 parameters) to two hidden layers of 128 units

each (19329 parameters), all at moderate divergence (cos𝜃 = 0.5).

Figure 3 and Table 3 show the results. The power law fit yields

𝛼𝑐 ∼ 0.38 ·𝑁 0.077
, indicating a weak positive dependence on model

size in this regime. The sharpness estimate increases with model

Table 3: Critical mixing fraction by model architecture at
cos𝜃 = 0.5.

Architecture Params 𝛼𝑐 Sharpness

(16,) 353 0.546 24.25

(32,) 705 0.687 43.34

(64,) 1409 0.781 89.26

(128,) 2817 0.765 137.28

(32, 32) 1761 0.484 98.17

(64, 64) 5569 0.781 124.20

(128, 64) 11009 0.718 140.49

(128, 128) 19329 0.828 238.94

figures/fig5_scaling_law.pdf

Figure 4: Scaling law validation. (a) Predicted vs. actual 𝛼𝑐 . (b)
𝛼𝑐 vs. divergence for different model sizes. (c) 𝛼𝑐 vs. model
size for different divergence levels.

size from 24.25 (353 parameters) to 238.94 (19329 parameters), sug-

gesting that larger models in this small-scale regime have sharper

minima.

5.2 Joint Scaling Law
We fit a scaling law relating 𝛼𝑐 to both model size 𝑁 and domain

divergence 𝛿 :

𝛼𝑐 (𝑁, 𝛿) ≈ 𝐶 · 𝛿𝛽 · 𝑁 −𝛾 , (10)

using data from five model sizes and five divergence levels (25 data

points total). The log-linear regression yields:

log𝛼𝑐 = log𝐶 + 𝛽 log𝛿 − 𝛾 log𝑁 . (11)

Figure 4 shows the scaling law fit. The model captures the main

trends: 𝛼𝑐 increases with domain divergence (𝛽 > 0) and the depen-

dence on model size varies by regime.

3
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Figure 5: Heatmap of 𝛼𝑐 (𝑁, 𝛿) across model sizes and domain
divergences, providing a lookup table for practitioners.

Algorithm 1 Adaptive Mixing for Fine-tuning

Require: Pre-trained model 𝜃0, data (𝐷pre, 𝐷ft
), target forgetting

rate 𝜏 , sensitivity 𝑠

1: Initialize 𝛼 ← 0.5, EMA forgetting
¯𝑓 ← 0

2: for 𝑡 = 1, . . . ,𝑇 do
3: Sample batch: 𝑛pre = ⌊𝛼 · 𝐵⌋ from 𝐷pre, rest from 𝐷

ft

4: Compute 𝐿
(𝑡 )
pre

before and after gradient step

5: 𝑓𝑡 ← max(0, 𝐿 (𝑡,after)
pre

− 𝐿 (𝑡,before)
pre

)
6:

¯𝑓 ← 0.95 · ¯𝑓 + 0.05 · 𝑓𝑡
7: if ¯𝑓 > 𝜏 then
8: 𝛼 ← min(𝛼max, 𝛼 + 0.01 · 𝑠 · ( ¯𝑓 /𝜏 − 1))
9: else if ¯𝑓 < 0.5 · 𝜏 then
10: 𝛼 ← max(𝛼min, 𝛼 − 0.005)
11: end if
12: end for

Figure 5 presents the full 𝛼𝑐 (𝑁, 𝛿) landscape as a heatmap, which

serves as a practical lookup table.

6 ADAPTIVE MIXING ALGORITHM
6.1 Algorithm Design
Rather than fixing 𝛼 a priori, we propose an adaptive algorithm

that monitors the forgetting signal during fine-tuning and adjusts

𝛼 accordingly.

The algorithm (Algorithm 1) uses an exponential moving average

(EMA) of the per-step forgetting signal to smooth out noise. When

forgetting exceeds the target rate 𝜏 , 𝛼 is increased proportionally.

When forgetting is well below target, 𝛼 is decreased to allow more

adaptation.
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Figure 6: Adaptive vs. static mixing. Top: adaptive 𝛼 trajec-
tories for three divergence levels. Bottom: comparison of
forgetting and fine-tuning loss between adaptive (dashed)
and static baselines.

6.2 Comparison with Static Baselines
Figure 6 compares the adaptive algorithm against static baselines

across three domain divergence levels. The adaptive algorithm

automatically discovers an appropriate mixing schedule: it starts at

𝛼 = 0.5 and adjusts based on observed forgetting.

For low divergence (cos𝜃 = 0.9), the algorithm quickly reduces

𝛼 to its minimum bound since forgetting is minimal, allowing maxi-

mum adaptation. For high divergence (cos𝜃 = 0.1), it increases 𝛼 to

protect pre-trained knowledge. The key advantage is that the adap-

tive algorithm achieves comparable forgetting-adaptation tradeoffs

without requiring an expensive grid search over static 𝛼 values.

7 RELATEDWORK
Catastrophic Forgetting. The phenomenon was first identified by

McCloskey and Cohen [11] and has been extensively studied [2,

10]. Elastic Weight Consolidation (EWC) [8] penalizes changes to

parameters important for prior tasks using the Fisher information

matrix. Learning without Forgetting [9] uses knowledge distillation

as a regularizer. Our work complements these by focusing on the

data mixing approach.

Loss Landscape Geometry. Sharpness-Aware Minimization [1]

explicitly seeks flat minima. Kalra et al. [7] introduce relative critical

sharpness as a scalable curvature measure for LLMs and connect it

to forgetting. Our framework builds on this by deriving the critical

mixing fraction from curvature properties.

Data Mixing Strategies. DoReMi [12] optimizes data mixtures

for pre-training. Our work focuses specifically on the pre-training

fraction needed during fine-tuning to prevent forgetting, which is

a distinct but complementary problem.

Scaling Laws. Following the Chinchilla framework [4], we pro-

pose a scaling law for the critical mixing fraction as a function of

model size and domain divergence.

Neural Tangent Kernel. In the infinite-width limit [6], fine-tuning

stays near initialization, naturally preventing forgetting. Our frame-

work quantifies how finite-width models deviate from this regime.

4
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8 DISCUSSION AND LIMITATIONS
Key Findings. Our results establish that the critical pre-training

fraction is not a single number but a function of model size, domain

divergence, and loss landscape geometry. The phase transition

behavior means that small changes in 𝛼 near 𝛼𝑐 can have large

effects on forgetting.

Practical Implications. For practitioners fine-tuning LLMs: (1)

measure domain divergence before choosing a mixing ratio, (2) use

our adaptive algorithm to avoid grid search, and (3) when in doubt,

err on the side of more pre-training data in the mix.

Limitations. Our simulations use small neural networks (up to

19329 parameters), which may not fully capture the dynamics of

billion-parameter LLMs. The linear analytical model, while pro-

viding useful intuition, makes strong assumptions about quadratic

loss surfaces. The scaling law extrapolation to LLM scale requires

validation with larger models. Additionally, we study regression

tasks with synthetic data; real-world language tasks may exhibit

more complex forgetting patterns.

Future Directions. Extending the framework to transformer ar-

chitectures, studying task-specific forgetting (where different capa-

bilities have different robustness), and validating the scaling law at

billion-parameter scale are important next steps.

9 CONCLUSION
We have presented a principled framework for determining the

critical pre-training data fraction needed to prevent catastrophic

forgetting during fine-tuning. Through analytical derivation and

neural network simulations, we have shown that forgetting exhibits

a phase transition controlled by the ratio of the fine-tuning gradient

magnitude to the pre-training loss curvature. Our adaptive mixing

algorithm provides a practical, grid-search-free approach, and our

scaling law offers predictions for larger model sizes. This work

takes a step toward solving the open problem posed by Kalra et

al. [7] by providing the first systematic framework connecting loss

landscape geometry to the required mixing fraction.
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