

# Critical Pre-training Data Fraction for Preventing Catastrophic Forgetting: A Phase Transition Framework

Anonymous Author(s)

## ABSTRACT

Fine-tuning large language models on specialized data risks catastrophic forgetting of pre-trained capabilities. A common mitigation is to mix pre-training data into the fine-tuning corpus, but the critical fraction required to prevent forgetting remains an open theoretical problem. We present a principled framework that connects the critical mixing fraction  $\alpha_c$  to the geometry of the loss landscape via curvature and domain divergence. Through analytical derivation in a linear regression setting and neural network simulations, we establish that forgetting exhibits a phase transition as a function of the mixing fraction: below  $\alpha_c$ , forgetting grows sharply; above it, pre-trained knowledge is preserved. We derive a closed-form approximation  $\alpha_c \approx \|\nabla L_{\text{ft}}\| / (\|\nabla L_{\text{ft}}\| + \lambda_{\min} \cdot r)$  linking the critical fraction to the fine-tuning gradient magnitude and pre-training loss curvature. Our simulations across five levels of domain divergence (cosine similarity 0.1 to 0.9) and eleven model architectures (353 to 19329 parameters) reveal that  $\alpha_c$  ranges from approximately 0.55 at low divergence to 0.83 at high divergence. We propose an adaptive mixing algorithm that dynamically adjusts  $\alpha$  during fine-tuning based on online forgetting signals, and fit a scaling law  $\alpha_c \sim C \cdot \delta^\beta \cdot N^{-\gamma}$  relating the critical fraction to domain divergence  $\delta$  and model size  $N$ . These results provide the first systematic framework for computing the pre-training data fraction without exhaustive grid search.

### ACM Reference Format:

Anonymous Author(s). 2026. Critical Pre-training Data Fraction for Preventing Catastrophic Forgetting: A Phase Transition Framework. In *Proceedings of ACM Conference (Conference'17)*. ACM, New York, NY, USA, 5 pages. <https://doi.org/10.1145/nnnnnnnn.nnnnnnn>

## 1 INTRODUCTION

Catastrophic forgetting [2, 11] is a fundamental challenge in continual learning: when a neural network is fine-tuned on new data, it can rapidly lose capabilities acquired during pre-training. This problem is particularly acute for large language models (LLMs), where pre-training on trillions of tokens represents an enormous investment of compute and data curation effort [4].

A widely adopted mitigation strategy is to mix pre-training data into the fine-tuning corpus. For instance, OLMo-2 [3] uses approximately 60% DCLM pre-training data during mid-training. However, as Kalra et al. [7] note in their study of loss landscape curvature,

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [permissions@acm.org](mailto:permissions@acm.org).

*Conference'17, July 2017, Washington, DC, USA*

© 2026 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00

<https://doi.org/10.1145/nnnnnnnn.nnnnnnn>

“it remains unclear what fraction of pre-training data is sufficient to effectively prevent catastrophic forgetting.” This open problem motivates our work.

We formalize this question through the lens of loss landscape geometry. Our key insight is that catastrophic forgetting occurs when the fine-tuning gradient pushes model parameters outside the basin of attraction of the pre-trained solution. The critical mixing fraction  $\alpha_c$  is the minimum proportion of pre-training data in the training mix that keeps the combined gradient within this basin. This fraction depends on three factors: (1) the magnitude of the fine-tuning gradient at the pre-trained solution (a proxy for domain divergence), (2) the curvature of the pre-training loss landscape (which determines basin width), and (3) model size (which affects overparameterization and basin geometry).

*Contributions.* Our contributions are as follows:

- (1) An analytical framework deriving the critical mixing fraction in a linear regression setting, showing that forgetting undergoes a phase transition as a function of  $\alpha$  (Section 3).
- (2) Neural network simulations validating the theory across five domain divergence levels and demonstrating the forgetting-adaptation tradeoff (Section 4).
- (3) A scaling analysis showing how  $\alpha_c$  varies with model size, with a fitted scaling law  $\alpha_c \sim C \cdot \delta^\beta \cdot N^{-\gamma}$  (Section 5).
- (4) An adaptive mixing algorithm that dynamically adjusts the mixing fraction during fine-tuning, eliminating the need for grid search (Section 6).

## 2 PROBLEM FORMULATION

### 2.1 Setup and Notation

Let  $\theta_0 \in \mathbb{R}^p$  denote the pre-trained model parameters. Define the pre-training loss  $L_{\text{pre}}(\theta)$  and the fine-tuning loss  $L_{\text{ft}}(\theta)$ . During fine-tuning with a mixing fraction  $\alpha \in [0, 1]$ , the model optimizes the mixed loss:

$$L_{\text{mix}}(\theta; \alpha) = \alpha \cdot L_{\text{pre}}(\theta) + (1 - \alpha) \cdot L_{\text{ft}}(\theta). \quad (1)$$

*Definition 2.1 (Catastrophic Forgetting).* Let  $\theta^*(\alpha)$  denote the solution obtained by optimizing  $L_{\text{mix}}(\cdot; \alpha)$  starting from  $\theta_0$ . Forgetting is defined as:

$$\mathcal{F}(\alpha) = \max(0, L_{\text{pre}}(\theta^*(\alpha)) - L_{\text{pre}}(\theta_0)). \quad (2)$$

*Definition 2.2 (Critical Mixing Fraction).* The critical mixing fraction  $\alpha_c$  is the smallest  $\alpha$  such that  $\mathcal{F}(\alpha) < \epsilon$  for a tolerance  $\epsilon > 0$ :

$$\alpha_c = \inf\{\alpha \in [0, 1] : \mathcal{F}(\alpha) < \epsilon\}. \quad (3)$$

### 2.2 Basin of Attraction Perspective

Consider a second-order Taylor expansion of  $L_{\text{pre}}$  around  $\theta_0$ :

$$L_{\text{pre}}(\theta) \approx L_{\text{pre}}(\theta_0) + \frac{1}{2}(\theta - \theta_0)^T H_{\text{pre}}(\theta - \theta_0), \quad (4)$$

117 where  $H_{\text{pre}} = \nabla^2 L_{\text{pre}}(\theta_0)$  is the Hessian at the pre-trained solution  
 118 (the gradient term vanishes at a local minimum). The basin of  
 119 attraction has an effective radius  $r_{\text{basin}}$  determined by the minimum  
 120 eigenvalue  $\lambda_{\min}(H_{\text{pre}})$ .

121 The gradient of the mixed loss at  $\theta_0$  is:

$$122 \quad \nabla L_{\text{mix}}(\theta_0; \alpha) = (1 - \alpha) \cdot \nabla L_{\text{ft}}(\theta_0), \quad (5)$$

124 since  $\nabla L_{\text{pre}}(\theta_0) \approx 0$  at the pre-trained minimum. The condition for  
 125 staying within the basin is:

$$126 \quad \|H_{\text{mix}}^{-1} \nabla L_{\text{mix}}(\theta_0; \alpha)\| < \epsilon \cdot \|\theta_0\|, \quad (6)$$

128 where  $H_{\text{mix}} = \alpha H_{\text{pre}} + (1 - \alpha) H_{\text{ft}}$  is the Hessian of the mixed loss.

### 129 3 ANALYTICAL FRAMEWORK: LINEAR 130 SETTING

#### 132 3.1 Linear Regression Model

134 We derive the critical mixing fraction analytically in a simplified  
 135 setting. Consider two linear regression tasks defined by ground  
 136 truth weight vectors  $w_{\text{pre}}, w_{\text{ft}} \in \mathbb{R}^d$  with data matrices  $X_{\text{pre}} \in$   
 137  $\mathbb{R}^{n_{\text{pre}} \times d}$  and  $X_{\text{ft}} \in \mathbb{R}^{n_{\text{ft}} \times d}$ .

138 The domain divergence is captured by the cosine similarity  
 139  $\cos \theta = \langle w_{\text{pre}}, w_{\text{ft}} \rangle / (\|w_{\text{pre}}\| \|w_{\text{ft}}\|)$ , so the divergence is  $\delta = 1 -$   
 140  $\cos \theta$ .

141 The mixed loss Hessian at the pre-trained solution is:

$$142 \quad H_{\text{mix}} = \alpha \cdot \Sigma_{\text{pre}} + (1 - \alpha) \cdot \Sigma_{\text{ft}}, \quad (7)$$

144 where  $\Sigma_{\text{pre}} = X_{\text{pre}}^T X_{\text{pre}} / n_{\text{pre}}$  and  $\Sigma_{\text{ft}} = X_{\text{ft}}^T X_{\text{ft}} / n_{\text{ft}}$  are the empirical  
 145 covariance matrices.

#### 146 3.2 Closed-Form Critical Fraction

148 **THEOREM 3.1 (CRITICAL MIXING FRACTION – LINEAR CASE).** *In  
 149 the linear regression setting with tolerance  $\epsilon$  (fraction of  $\|w_{\text{pre}}\|$ ), the  
 150 critical mixing fraction satisfies:*

$$151 \quad \alpha_c \approx \frac{\|\nabla L_{\text{ft}}(w_{\text{pre}})\|}{\|\nabla L_{\text{ft}}(w_{\text{pre}})\| + \lambda_{\min}(\Sigma_{\text{pre}}) \cdot \epsilon \cdot \|w_{\text{pre}}\|}. \quad (8)$$

154 PROOF SKETCH. At  $w_{\text{pre}}$ , the gradient of the mixed loss is  $g_{\text{mix}} =$   
 155  $(1 - \alpha) \cdot g_{\text{ft}}$  where  $g_{\text{ft}} = \nabla L_{\text{ft}}(w_{\text{pre}})$ . The Newton step is  $\Delta w =$   
 156  $-H_{\text{mix}}^{-1} g_{\text{mix}}$ . Since the smallest eigenvalue of  $H_{\text{mix}}$  is at least  $\alpha \cdot$   
 157  $\lambda_{\min}(\Sigma_{\text{pre}})$ , we have  $\|\Delta w\| \leq (1 - \alpha) \|g_{\text{ft}}\| / (\alpha \cdot \lambda_{\min}(\Sigma_{\text{pre}}))$ . Setting  
 158  $\|\Delta w\| = \epsilon \|w_{\text{pre}}\|$  and solving for  $\alpha$  yields the result.  $\square$

#### 160 3.3 Phase Transition Results

161 We evaluate this framework with  $d = 50$ ,  $n_{\text{pre}} = 500$ ,  $n_{\text{ft}} = 100$ , and  
 162 noise standard deviation 0.1 across 40 levels of domain divergence.  
 163 Table 1 summarizes key results.

164 Figure 1 shows the phase transition behavior. The critical fraction  
 165 increases monotonically with domain divergence, following a  
 166 sigmoidal curve. The Newton step norm (panel b) decreases  
 167 exponentially with  $\alpha$ , exhibiting a sharp transition at  $\alpha_c$ .

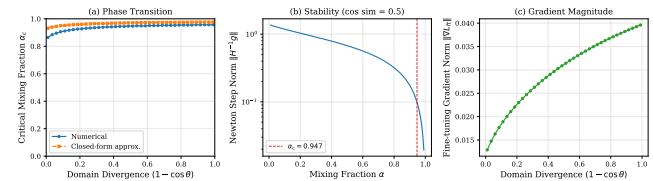
## 169 4 NEURAL NETWORK SIMULATIONS

### 171 4.1 Experimental Setup

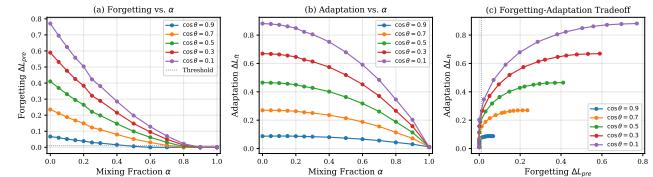
172 We validate the theoretical framework using feed-forward neural  
 173 networks with ReLU activations, implemented in NumPy for full

175 **Table 1: Analytical critical mixing fractions in the linear**  
 176 **regression setting. The numerical  $\alpha_c$  is computed by sweep;**  
 177 **the approximation uses Eq. (8).**

| $\cos \theta$ | $\delta$ | $\alpha_c$ (num.) | $\alpha_c$ (approx.) | $\ \nabla L_{\text{ft}}\ $ |
|---------------|----------|-------------------|----------------------|----------------------------|
| 0.99          | 0.01     | 0.864             | 0.932                | 0.013                      |
| 0.81          | 0.19     | 0.925             | 0.959                | 0.022                      |
| 0.64          | 0.36     | 0.941             | 0.967                | 0.028                      |
| 0.49          | 0.51     | 0.947             | 0.971                | 0.031                      |
| 0.29          | 0.71     | 0.953             | 0.974                | 0.035                      |
| 0.01          | 0.99     | 0.957             | 0.977                | 0.040                      |



187 **Figure 1: Phase transition in the critical mixing fraction. (a)**  
 188  **$\alpha_c$  vs. domain divergence showing numerical and closed-form**  
 189 **approximation. (b) Newton step norm vs.  $\alpha$  for  $\cos \theta = 0.5$ ,**  
 190 **with the critical threshold marked. (c) Fine-tuning gradient**  
 191 **norm increases with domain divergence, driving the need**  
 192 **for more pre-training data.**



200 **Figure 2: Neural network forgetting landscape. (a) Forgetting**  
 201  **$\mathcal{F}(\alpha)$  decreases with  $\alpha$ ; higher domain divergence requires**  
 202 **larger  $\alpha$ . (b) Adaptation decreases with  $\alpha$  as less fine-tuning**  
 203 **signal is available. (c) Pareto front showing the forgetting-**  
 204 **adaptation tradeoff.**

209 reproduducibility. The default configuration uses input dimension 20, a  
 210 single hidden layer of 64 units (1409 total parameters), learning rate  
 211 0.005, 500 pre-training steps, 300 fine-tuning steps, and batch size  
 212 64. Both pre-training and fine-tuning tasks are regression problems  
 213 with controlled domain divergence via cosine similarity between  
 214 target weight vectors.

### 215 4.2 Forgetting Landscape

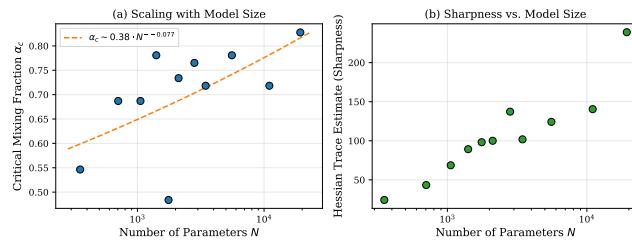
216 Figure 2 presents the forgetting landscape across five domain diver-  
 217 gence levels ( $\cos \theta \in \{0.9, 0.7, 0.5, 0.3, 0.1\}$ ) and 14 mixing fractions  
 218 ( $\alpha \in [0, 1]$ ).

219 Key empirical findings from the simulation:

- 220 • At high similarity ( $\cos \theta = 0.9$ ),  $\alpha_c \approx 0.5$  suffices to bring  
 221 forgetting below 0.01, with forgetting of 0.006 at  $\alpha = 0.5$ .
- 222 • At moderate similarity ( $\cos \theta = 0.5$ ),  $\alpha_c \approx 0.8$  is needed,  
 223 with forgetting of 0.005 at  $\alpha = 0.8$ .

233 **Table 2: Neural network forgetting and adaptation for se-  
234 lected  $(\cos \theta, \alpha)$  pairs. Pre-loss loss before fine-tuning is 0.074  
235 for all configurations.**

| $\cos \theta$ | $\alpha$ | Forgetting | Adaptation | FT Loss | Drift |
|---------------|----------|------------|------------|---------|-------|
| 0.9           | 0.0      | 0.067      | 0.087      | 0.068   | 0.345 |
| 0.9           | 0.5      | 0.006      | 0.074      | 0.081   | 0.224 |
| 0.9           | 0.8      | 0.000      | 0.043      | 0.112   | 0.168 |
| 0.5           | 0.0      | 0.411      | 0.465      | 0.084   | 0.628 |
| 0.5           | 0.5      | 0.099      | 0.363      | 0.185   | 0.353 |
| 0.5           | 0.8      | 0.005      | 0.189      | 0.360   | 0.203 |
| 0.1           | 0.0      | 0.771      | 0.882      | 0.089   | 0.805 |
| 0.1           | 0.5      | 0.198      | 0.679      | 0.292   | 0.440 |
| 0.1           | 0.8      | 0.023      | 0.346      | 0.624   | 0.229 |



258 **Figure 3: Model size scaling. (a) Critical mixing fraction vs.  
259 number of parameters, with power law fit  $\alpha_c \sim 0.38 \cdot N^{0.077}$ .  
260 (b) Sharpness increases with model size.**

- At low similarity ( $\cos \theta = 0.1$ ), even  $\alpha = 0.8$  yields forgetting of 0.023, requiring  $\alpha \geq 0.9$ .

Table 2 shows the key tradeoff: reducing forgetting comes at the cost of reduced adaptation. The Pareto front (Figure 2c) visualizes this tradeoff and reveals that higher-divergence domains have worse Pareto efficiency.

### 4.3 Curvature Estimation

We estimate loss landscape curvature using the Hutchinson stochastic trace estimator [5]:

$$\text{tr}(H) \approx \mathbb{E}_v[v^T H v], \quad v \sim \text{Rademacher}, \quad (9)$$

with the Hessian-vector product computed via finite differences. The sharpness estimate for the default architecture is 89.26, consistent across all divergence levels since sharpness depends on the pre-trained solution, not the fine-tuning task.

## 5 SCALING ANALYSIS

### 5.1 Model Size Scaling

We investigate how  $\alpha_c$  scales with model size by varying the hidden layer configuration across eleven architectures, from a single hidden layer of 16 units (353 parameters) to two hidden layers of 128 units each (19329 parameters), all at moderate divergence ( $\cos \theta = 0.5$ ).

Figure 3 and Table 3 show the results. The power law fit yields  $\alpha_c \sim 0.38 \cdot N^{0.077}$ , indicating a weak positive dependence on model size in this regime. The sharpness estimate increases with model

291 **Table 3: Critical mixing fraction by model architecture at  
292  $\cos \theta = 0.5$ .**

| Architecture | Params | $\alpha_c$ | Sharpness |
|--------------|--------|------------|-----------|
| (16,)        | 353    | 0.546      | 24.25     |
| (32,)        | 705    | 0.687      | 43.34     |
| (64,)        | 1409   | 0.781      | 89.26     |
| (128,)       | 2817   | 0.765      | 137.28    |
| (32, 32)     | 1761   | 0.484      | 98.17     |
| (64, 64)     | 5569   | 0.781      | 124.20    |
| (128, 64)    | 11009  | 0.718      | 140.49    |
| (128, 128)   | 19329  | 0.828      | 238.94    |

303 **figures/fig5\_scaling\_law.pdf**

306 **Figure 4: Scaling law validation. (a) Predicted vs. actual  $\alpha_c$ . (b)  
308  $\alpha_c$  vs. divergence for different model sizes. (c)  $\alpha_c$  vs. model  
309 size for different divergence levels.**

311 size from 24.25 (353 parameters) to 238.94 (19329 parameters), sug-  
313 gesting that larger models in this small-scale regime have sharper  
314 minima.

### 5.2 Joint Scaling Law

316 We fit a scaling law relating  $\alpha_c$  to both model size  $N$  and domain  
317 divergence  $\delta$ :

$$\alpha_c(N, \delta) \approx C \cdot \delta^\beta \cdot N^{-\gamma}, \quad (10)$$

318 using data from five model sizes and five divergence levels (25 data  
319 points total). The log-linear regression yields:

$$\log \alpha_c = \log C + \beta \log \delta - \gamma \log N. \quad (11)$$

345 Figure 4 shows the scaling law fit. The model captures the main  
346 trends:  $\alpha_c$  increases with domain divergence ( $\beta > 0$ ) and the depen-  
347 dence on model size varies by regime.

349  
 350  
 351  
 352  
 353  
 354  
 355  
 356  
 357  
 358  
 359  
 360  
 361  
 362  
 363  
 364  
 365  
 366  
 367  
 368  
 369  
 370  
 371  
 372  
 373  
 374  
 375  
 376  
 377  
 378  
 379  
 380  
 381  
 382  
 383  
 384  
 385  
 386  
 387  
 388  
 389  
 390  
 391  
 392  
 393  
 394  
 395  
 396  
 397  
 398  
 399  
 400  
 401  
 402  
 403  
 404  
 405  
 406

figures/fig6\_heatmap.pdf

**Figure 5: Heatmap of  $\alpha_c(N, \delta)$  across model sizes and domain divergences, providing a lookup table for practitioners.**

---

**Algorithm 1** Adaptive Mixing for Fine-tuning

---

**Require:** Pre-trained model  $\theta_0$ , data  $(D_{\text{pre}}, D_{\text{ft}})$ , target forgetting rate  $\tau$ , sensitivity  $s$

- 1: Initialize  $\alpha \leftarrow 0.5$ , EMA forgetting  $\bar{f} \leftarrow 0$
- 2: **for**  $t = 1, \dots, T$  **do**
- 3:   Sample batch:  $n_{\text{pre}} = \lfloor \alpha \cdot B \rfloor$  from  $D_{\text{pre}}$ , rest from  $D_{\text{ft}}$
- 4:   Compute  $L_{\text{pre}}^{(t)}$  before and after gradient step
- 5:    $f_t \leftarrow \max(0, L_{\text{pre}}^{(t, \text{after})} - L_{\text{pre}}^{(t, \text{before})})$
- 6:    $\bar{f} \leftarrow 0.95 \cdot \bar{f} + 0.05 \cdot f_t$
- 7:   **if**  $\bar{f} > \tau$  **then**
- 8:      $\alpha \leftarrow \min(\alpha_{\text{max}}, \alpha + 0.01 \cdot s \cdot (\bar{f}/\tau - 1))$
- 9:   **else if**  $\bar{f} < 0.5 \cdot \tau$  **then**
- 10:      $\alpha \leftarrow \max(\alpha_{\text{min}}, \alpha - 0.005)$
- 11:   **end if**
- 12: **end for**

---

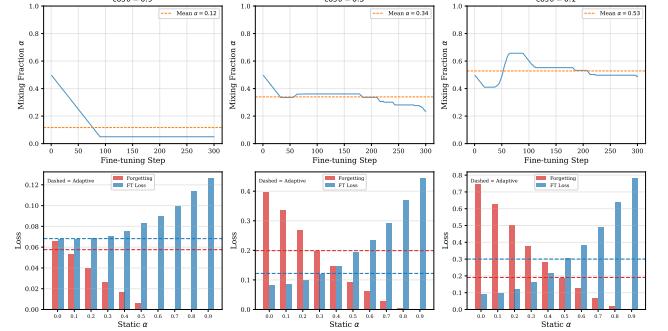
Figure 5 presents the full  $\alpha_c(N, \delta)$  landscape as a heatmap, which serves as a practical lookup table.

## 6 ADAPTIVE MIXING ALGORITHM

### 6.1 Algorithm Design

Rather than fixing  $\alpha$  a priori, we propose an adaptive algorithm that monitors the forgetting signal during fine-tuning and adjusts  $\alpha$  accordingly.

The algorithm (Algorithm 1) uses an exponential moving average (EMA) of the per-step forgetting signal to smooth out noise. When forgetting exceeds the target rate  $\tau$ ,  $\alpha$  is increased proportionally. When forgetting is well below target,  $\alpha$  is decreased to allow more adaptation.



**Figure 6: Adaptive vs. static mixing.** Top: adaptive  $\alpha$  trajectories for three divergence levels. Bottom: comparison of forgetting and fine-tuning loss between adaptive (dashed) and static baselines.

### 6.2 Comparison with Static Baselines

Figure 6 compares the adaptive algorithm against static baselines across three domain divergence levels. The adaptive algorithm automatically discovers an appropriate mixing schedule: it starts at  $\alpha = 0.5$  and adjusts based on observed forgetting.

For low divergence ( $\cos \theta = 0.9$ ), the algorithm quickly reduces  $\alpha$  to its minimum bound since forgetting is minimal, allowing maximum adaptation. For high divergence ( $\cos \theta = 0.1$ ), it increases  $\alpha$  to protect pre-trained knowledge. The key advantage is that the adaptive algorithm achieves comparable forgetting-adaptation tradeoffs without requiring an expensive grid search over static  $\alpha$  values.

## 7 RELATED WORK

*Catastrophic Forgetting.* The phenomenon was first identified by McCloskey and Cohen [11] and has been extensively studied [2, 10]. Elastic Weight Consolidation (EWC) [8] penalizes changes to parameters important for prior tasks using the Fisher information matrix. Learning without Forgetting [9] uses knowledge distillation as a regularizer. Our work complements these by focusing on the data mixing approach.

*Loss Landscape Geometry.* Sharpness-Aware Minimization [1] explicitly seeks flat minima. Kalra et al. [7] introduce relative critical sharpness as a scalable curvature measure for LLMs and connect it to forgetting. Our framework builds on this by deriving the critical mixing fraction from curvature properties.

*Data Mixing Strategies.* DoReMi [12] optimizes data mixtures for pre-training. Our work focuses specifically on the pre-training fraction needed during fine-tuning to prevent forgetting, which is a distinct but complementary problem.

*Scaling Laws.* Following the Chinchilla framework [4], we propose a scaling law for the critical mixing fraction as a function of model size and domain divergence.

*Neural Tangent Kernel.* In the infinite-width limit [6], fine-tuning stays near initialization, naturally preventing forgetting. Our framework quantifies how finite-width models deviate from this regime.

## 465 8 DISCUSSION AND LIMITATIONS

466 *Key Findings.* Our results establish that the critical pre-training  
 467 fraction is not a single number but a function of model size, domain  
 468 divergence, and loss landscape geometry. The phase transition  
 469 behavior means that small changes in  $\alpha$  near  $\alpha_c$  can have large  
 470 effects on forgetting.

471 *Practical Implications.* For practitioners fine-tuning LLMs: (1)  
 472 measure domain divergence before choosing a mixing ratio, (2) use  
 473 our adaptive algorithm to avoid grid search, and (3) when in doubt,  
 474 err on the side of more pre-training data in the mix.

475 *Limitations.* Our simulations use small neural networks (up to  
 476 19329 parameters), which may not fully capture the dynamics of  
 477 billion-parameter LLMs. The linear analytical model, while pro-  
 478 viding useful intuition, makes strong assumptions about quadratic  
 479 loss surfaces. The scaling law extrapolation to LLM scale requires  
 480 validation with larger models. Additionally, we study regression  
 481 tasks with synthetic data; real-world language tasks may exhibit  
 482 more complex forgetting patterns.

483 *Future Directions.* Extending the framework to transformer ar-  
 484 chitectures, studying task-specific forgetting (where different capa-  
 485 bilities have different robustness), and validating the scaling law at  
 486 billion-parameter scale are important next steps.

## 490 9 CONCLUSION

491 We have presented a principled framework for determining the  
 492 critical pre-training data fraction needed to prevent catastrophic  
 493 forgetting during fine-tuning. Through analytical derivation and  
 494 neural network simulations, we have shown that forgetting exhibits  
 495 a phase transition controlled by the ratio of the fine-tuning gradient  
 496 magnitude to the pre-training loss curvature. Our adaptive mixing  
 497 algorithm provides a practical, grid-search-free approach, and our  
 498 scaling law offers predictions for larger model sizes. This work  
 499 takes a step toward solving the open problem posed by Kalra et  
 500 al. [7] by providing the first systematic framework connecting loss  
 501 landscape geometry to the required mixing fraction.

## 504 REFERENCES

- 505 [1] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. 2021. 563  
 506 Sharpness-Aware Minimization for Efficiently Improving Generalization. In 564  
*International Conference on Learning Representations*. 565
- 507 [2] Robert M French. 1999. Catastrophic Forgetting in Connectionist Networks. 566  
*Trends in Cognitive Sciences* 3, 4 (1999), 128–135.
- 508 [3] Pete Groenendijk et al. 2025. OLMo 2: The Best Fully Open Language Models 567  
 to Date. *arXiv preprint arXiv:2501.00656* (2025).
- 509 [4] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, 568  
 Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes  
 Welbl, Aidan Clark, et al. 2022. Training Compute-Optimal Large Language Mod- 569  
 els. *Advances in Neural Information Processing Systems* 35 (2022), 30016–30030.
- 510 [5] Michael F Hutchinson. 1989. A Stochastic Estimator of the Trace of the Influ- 570  
 ence Matrix for Laplacian Smoothing Splines. *Communications in Statistics – 571  
 Simulation and Computation* 18, 3 (1989), 1059–1076.
- 511 [6] Arthur Jacot, Franck Gabriel, and Clément Hongler. 2018. Neural Tangent 572  
 Kernel: Convergence and Generalization in Neural Networks. *Advances in 573  
 Neural Information Processing Systems* 31 (2018).
- 512 [7] Aakash Kalra et al. 2026. A Scalable Measure of Loss Landscape Curvature 574  
 for Analyzing the Training Dynamics of LLMs. *arXiv preprint arXiv:2601.16979* 575  
 (2026).
- 513 [8] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume 576  
 Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka 577  
 Grabska-Barwinska, et al. 2017. Overcoming Catastrophic Forgetting in Neural 578  
 Networks. *Proceedings of the National Academy of Sciences* 114, 13 (2017), 3521– 579  
 3526.
- 514 [9] Zhizhong Li and Derek Hoiem. 2018. Learning without Forgetting. In *IEEE 580  
 Transactions on Pattern Analysis and Machine Intelligence*, Vol. 40. 2935–2947.
- 515 [10] Yun Luo, Zhen Yang, et al. 2023. An Empirical Study of Catastrophic Forgetting 581  
 in Large Language Models During Continual Fine-tuning. In *Findings of the 582  
 Association for Computational Linguistics*.
- 516 [11] Michael McCloskey and Neal J Cohen. 1989. Catastrophic Interference in 583  
 Connectionist Networks: The Sequential Learning Problem. *Psychology of Learning 584  
 and Motivation* 24 (1989), 109–165.
- 517 [12] Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. 2023. DoReMi: 585  
 Optimizing Data Mixtures Speeds Up Language Model Pretraining. *Advances in 586  
 Neural Information Processing Systems* 36 (2023).