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ABSTRACT

Fine-tuning large language models on specialized data risks cat-
astrophic forgetting of pre-trained capabilities. A common miti-
gation is to mix pre-training data into the fine-tuning corpus, but
the critical fraction required to prevent forgetting remains an open
theoretical problem. We present a principled framework that con-
nects the critical mixing fraction . to the geometry of the loss
landscape via curvature and domain divergence. Through analyt-
ical derivation in a linear regression setting and neural network
simulations, we establish that forgetting exhibits a phase transition
as a function of the mixing fraction: below «, forgetting grows
sharply; above it, pre-trained knowledge is preserved. We derive
a closed-form approximation a; = ||VLg||/(||VLg|| + Amin - 7) link-
ing the critical fraction to the fine-tuning gradient magnitude and
pre-training loss curvature. Our simulations across five levels of
domain divergence (cosine similarity 0.1 to 0.9) and eleven model
architectures (353 to 19329 parameters) reveal that o ranges from
approximately 0.55 at low divergence to 0.83 at high divergence.
We propose an adaptive mixing algorithm that dynamically adjusts
a during fine-tuning based on online forgetting signals, and fit a
scaling law a¢ ~ C - 8% - N7V relating the critical fraction to do-
main divergence § and model size N. These results provide the first
systematic framework for computing the pre-training data fraction
without exhaustive grid search.
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1 INTRODUCTION

Catastrophic forgetting [2, 11] is a fundamental challenge in con-
tinual learning: when a neural network is fine-tuned on new data,
it can rapidly lose capabilities acquired during pre-training. This
problem is particularly acute for large language models (LLMs),
where pre-training on trillions of tokens represents an enormous
investment of compute and data curation effort [4].

A widely adopted mitigation strategy is to mix pre-training data
into the fine-tuning corpus. For instance, OLMo-2 [3] uses approxi-
mately 60% DCLM pre-training data during mid-training. However,
as Kalra et al. [7] note in their study of loss landscape curvature,
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“it remains unclear what fraction of pre-training data is sufficient
to effectively prevent catastrophic forgetting” This open problem
motivates our work.

We formalize this question through the lens of loss landscape
geometry. Our key insight is that catastrophic forgetting occurs
when the fine-tuning gradient pushes model parameters outside the
basin of attraction of the pre-trained solution. The critical mixing
fraction o, is the minimum proportion of pre-training data in the
training mix that keeps the combined gradient within this basin.
This fraction depends on three factors: (1) the magnitude of the
fine-tuning gradient at the pre-trained solution (a proxy for domain
divergence), (2) the curvature of the pre-training loss landscape
(which determines basin width), and (3) model size (which affects
overparameterization and basin geometry).

Contributions. Our contributions are as follows:

(1) An analytical framework deriving the critical mixing frac-
tion in a linear regression setting, showing that forgetting
undergoes a phase transition as a function of « (Section 3).

(2) Neural network simulations validating the theory across

five domain divergence levels and demonstrating the forgetting-

adaptation tradeoff (Section 4).

(3) A scaling analysis showing how a, varies with model size,
with a fitted scaling law a; ~ C - 88 . N~V (Section 5).

(4) An adaptive mixing algorithm that dynamically adjusts the
mixing fraction during fine-tuning, eliminating the need
for grid search (Section 6).

2 PROBLEM FORMULATION
2.1 Setup and Notation

Let Oy € R? denote the pre-trained model parameters. Define the
pre-training loss Lyre(0) and the fine-tuning loss Lg (6). During
fine-tuning with a mixing fraction « € [0, 1], the model optimizes
the mixed loss:

Linix (0; @) = & - Lpre (0) + (1 — @) - Lzt (6). 1)

Definition 2.1 (Catastrophic Forgetting). Let 0 () denote the so-
lution obtained by optimizing Lp,ix (-; @) starting from 6. Forgetting
is defined as:

F(a) = max(O, Lpre(e*(a)) - Lpre(eo))~ 2

Definition 2.2 (Critical Mixing Fraction). The critical mixing frac-
tion a. is the smallest « such that ¥ (a) < € for a tolerance € > 0:

ac =inf{a € [0,1] : F () < €}. (3)

2.2 Basin of Attraction Perspective

Consider a second-order Taylor expansion of Lyre around 6p:

Lpre(6) = Lpre(60) + (8 — )T Hie (6 — ), (@)
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where Hpre = Vszre(Qo) is the Hessian at the pre-trained solution
(the gradient term vanishes at a local minimum). The basin of
attraction has an effective radius ry,g;, determined by the minimum
eigenvalue Apin (Hpre)-

The gradient of the mixed loss at 0y is:

Vimix(6o;@) = (1 - a) - VLg (60), (5
since VLpre(69) ~ 0 at the pre-trained minimum. The condition for
staying within the basin is:

I1Hy 2 VLmix (00 @) || < € - [160]l, ©)

where Hpiy = aHpre + (1 — a)Hg is the Hessian of the mixed loss.

3 ANALYTICAL FRAMEWORK: LINEAR
SETTING

3.1 Linear Regression Model

We derive the critical mixing fraction analytically in a simplified
setting. Consider two linear regression tasks defined by ground
truth weight vectors wpre, wg € R9 with data matrices Xpre €
Re*d and Xp € R™¥4,

The domain divergence is captured by the cosine similarity
cos 0 = (wpre, W)/ (Ilwprell[lwg|]), so the divergence is § = 1 —
cos 6.

The mixed loss Hessian at the pre-trained solution is:

Hpix = a - Zpre + (1 — @) - 2y, (7)
where Zpre = XpTreXpre [npre and g = Xf{ Xii/ng are the empirical
covariance matrices.

3.2 Closed-Form Critical Fraction
THEOREM 3.1 (CRITICAL MIXING FRACTION — LINEAR CASE). In
the linear regression setting with tolerance € (fraction of ||wprell ), the
critical mixing fraction satisfies:
||VLft(Wpre)||
||VLft(Wpre)|| + Amin(zpre) c€- ||Wpre||‘

ac ®)

PROOF SKETCH. At Wpre, the gradient of the mixed loss is gmix =
(1 - a) - gg where g = VLg(Wpre). The Newton step is Aw =
—Hr;ilxgmix. Since the smallest eigenvalue of Hyjy is at least o -
Amin(zpre): we have [|Aw]| < (1-a)llggll/(a 'Amin(zpre)) Setting
|Aw|| = €||wprell and solving for a yields the result. o

3.3 Phase Transition Results

We evaluate this framework with d = 50, npre = 500, ng = 100, and
noise standard deviation 0.1 across 40 levels of domain divergence.
Table 1 summarizes key results.

Figure 1 shows the phase transition behavior. The critical frac-
tion increases monotonically with domain divergence, following a
sigmoidal curve. The Newton step norm (panel b) decreases expo-
nentially with «, exhibiting a sharp transition at a..

4 NEURAL NETWORK SIMULATIONS
4.1 Experimental Setup

We validate the theoretical framework using feed-forward neural
networks with ReLU activations, implemented in NumPy for full

Anon.

Table 1: Analytical critical mixing fractions in the linear
regression setting. The numerical «, is computed by sweep;
the approximation uses Eq. (8).

cos 6 1 ac (num.)  ac (approx.) || VLg]|
099 0.01 0.864 0.932 0.013
0.81 0.19 0.925 0.959 0.022
0.64 036 0.941 0.967 0.028
049 0.51 0.947 0.971 0.031
029 0.71 0.953 0.974 0.035
0.01 0.99 0.957 0.977 0.040
) (a) Phase Transition (b) Stability (cos sim = 0.5) (c) Gradient Magnitude
[rm— om0

0.020

Critical Mixing Fraction a.
Newton Step Norm |H-'g]

Fine-tuning Gradient Norm [VLs]

- a=0947

0
00 0z o4 06 08 10 0o 02 o4 o6 08 10 00 02 o4 06 08 10
Domain Divergence (1 - cos) Mixing Fraction a Domain Divergence (1 - cos8)

Figure 1: Phase transition in the critical mixing fraction. (a)
ac vs.domain divergence showing numerical and closed-form
approximation. (b) Newton step norm vs. « for cos6 = 0.5,
with the critical threshold marked. (c) Fine-tuning gradient
norm increases with domain divergence, driving the need
for more pre-training data.

() Forgetting vs. @

(b) Adaptation vs. @ (¢) Forgetting-Adaptation Tradeoff

Adaptation ALg

02 04 o6 o
Forgetting ALy

Figure 2: Neural network forgetting landscape. (a) Forgetting
F () decreases with o; higher domain divergence requires
larger . (b) Adaptation decreases with « as less fine-tuning
signal is available. (c) Pareto front showing the forgetting-

adaptation tradeoff.

reproducibility. The default configuration uses input dimension 20, a
single hidden layer of 64 units (1409 total parameters), learning rate
0.005, 500 pre-training steps, 300 fine-tuning steps, and batch size
64. Both pre-training and fine-tuning tasks are regression problems
with controlled domain divergence via cosine similarity between
target weight vectors.

4.2 Forgetting Landscape

Figure 2 presents the forgetting landscape across five domain diver-
gence levels (cos 8 € {0.9,0.7,0.5,0.3,0.1}) and 14 mixing fractions
(a € [0,1]).
Key empirical findings from the simulation:
e At high similarity (cos 8 = 0.9), a. ~ 0.5 suffices to bring
forgetting below 0.01, with forgetting of 0.006 at & = 0.5.
e At moderate similarity (cos @ = 0.5), ¢, ~ 0.8 is needed,
with forgetting of 0.005 at « = 0.8.
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Table 2: Neural network forgetting and adaptation for se-
lected (cos 6, a) pairs. Pre-loss loss before fine-tuning is 0.074
for all configurations.
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Table 3: Critical mixing fraction by model architecture at
cosf =0.5.

Architecture Params @  Sharpness
(16,) 353 0.546  24.25
(32) 705 0.687 43.34
(64,) 1409  0.781 89.26
(128,) 2817 0.765 137.28
(32, 32) 1761 0.484 98.17
(64, 64) 5569 0781  124.20
(128, 64) 11009 0.718 140.49
(128, 128) 19329 0.828 238.94

cos@ a Forgetting Adaptation FT Loss Drift
0.9 0.0 0.067 0.087 0.068 0.345
0.9 0.5 0.006 0.074 0.081 0.224
0.9 0.8 0.000 0.043 0.112 0.168
0.5 0.0 0.411 0.465 0.084 0.628
0.5 0.5 0.099 0.363 0.185 0.353
0.5 0.8 0.005 0.189 0.360 0.203
0.1 0.0 0.771 0.882 0.089 0.805
0.1 0.5 0.198 0.679 0.292 0.440
0.1 0.8 0.023 0.346 0.624 0.229

(a) Scaling with Model Size

(b) Sharpness vs. Model Size

& 0.80
=
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=
£ 065
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2 0.60
=
£ 055
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ac~0.38-N~~0077

»
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004
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Number of Parameters N

Hessian Trace Estimate (Sharpness)

10°

Number of Parameters N

Figure 3: Model size scaling. (a) Critical mixing fraction vs.
number of parameters, with power law fit a. ~ 0.38 - N%-077,
(b) Sharpness increases with model size.

e At low similarity (cos § = 0.1), even « = 0.8 yields forget-
ting of 0.023, requiring o > 0.9.

Table 2 shows the key tradeoff: reducing forgetting comes at
the cost of reduced adaptation. The Pareto front (Figure 2c) visual-
izes this tradeoff and reveals that higher-divergence domains have
worse Pareto efficiency.

4.3 Curvature Estimation

We estimate loss landscape curvature using the Hutchinson sto-
chastic trace estimator [5]:

tr(H) = EU[UTHU], v ~ Rademacher, 9)

with the Hessian-vector product computed via finite differences.
The sharpness estimate for the default architecture is 89.26, con-
sistent across all divergence levels since sharpness depends on the
pre-trained solution, not the fine-tuning task.

5 SCALING ANALYSIS
5.1 Model Size Scaling

We investigate how . scales with model size by varying the hidden
layer configuration across eleven architectures, from a single hidden
layer of 16 units (353 parameters) to two hidden layers of 128 units
each (19329 parameters), all at moderate divergence (cos 6 = 0.5).
Figure 3 and Table 3 show the results. The power law fit yields

¢« ~0.38- N977 ‘indicating a weak positive dependence on model
size in this regime. The sharpness estimate increases with model

figures/fig5_scaling_law.pdf

Figure 4: Scaling law validation. (a) Predicted vs. actual «.. (b)
ac vs. divergence for different model sizes. (c) @; vs. model
size for different divergence levels.

size from 24.25 (353 parameters) to 238.94 (19329 parameters), sug-
gesting that larger models in this small-scale regime have sharper
minima.

5.2 Joint Scaling Law
We fit a scaling law relating . to both model size N and domain
divergence §:

ac(N,8) ~C-8P N7V, (10)
using data from five model sizes and five divergence levels (25 data
points total). The log-linear regression yields:

logac =logC+ flogd — ylog N. (11)
Figure 4 shows the scaling law fit. The model captures the main

trends: a, increases with domain divergence (f > 0) and the depen-
dence on model size varies by regime.

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348



359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

391

393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference’17, July 2017, Washington, DC, USA

figures/figb_heatmap.pdf

Figure 5: Heatmap of a.(N, §) across model sizes and domain
divergences, providing a lookup table for practitioners.

Algorithm 1 Adaptive Mixing for Fine-tuning

Require: Pre-trained model 0, data (Dpre, Dy;), target forgetting
rate 7, sensitivity s
1: Initialize & < 0.5, EMA forgetting f < 0
2. fort=1,...,T do
3: Sample batch: npre = | & - B] from Dpye, rest from Dy
(2)

4 Compute Ly, before and after gradient step
5 f — max(0, ngiéafter) _ L}giébefore))

6 f0.95-f+0.05f;

7. if f > r then

8: o «— min(amax, @ +0.01-5s-(f/7-1))
9. elseif f < 0.5 7 then

10: a «— max(dpin, « — 0.005)

1. endif

12: end for

Figure 5 presents the full o (N, §) landscape as a heatmap, which
serves as a practical lookup table.

6 ADAPTIVE MIXING ALGORITHM
6.1 Algorithm Design

Rather than fixing a a priori, we propose an adaptive algorithm
that monitors the forgetting signal during fine-tuning and adjusts
a accordingly.

The algorithm (Algorithm 1) uses an exponential moving average
(EMA) of the per-step forgetting signal to smooth out noise. When
forgetting exceeds the target rate 7, « is increased proportionally.
When forgetting is well below target, « is decreased to allow more
adaptation.

Anon.

c0s8=0.9 c0s8=0.5 cos8=01

Mixing Fraction @

Mixing Fraction @

0 s0 w0 10 200 250 300 )

Loss

Figure 6: Adaptive vs. static mixing. Top: adaptive « trajec-
tories for three divergence levels. Bottom: comparison of
forgetting and fine-tuning loss between adaptive (dashed)
and static baselines.

6.2 Comparison with Static Baselines

Figure 6 compares the adaptive algorithm against static baselines
across three domain divergence levels. The adaptive algorithm
automatically discovers an appropriate mixing schedule: it starts at
a = 0.5 and adjusts based on observed forgetting.

For low divergence (cos 6 = 0.9), the algorithm quickly reduces
«a to its minimum bound since forgetting is minimal, allowing maxi-
mum adaptation. For high divergence (cos 6 = 0.1), it increases « to
protect pre-trained knowledge. The key advantage is that the adap-
tive algorithm achieves comparable forgetting-adaptation tradeoffs
without requiring an expensive grid search over static a values.

7 RELATED WORK

Catastrophic Forgetting. The phenomenon was first identified by
McCloskey and Cohen [11] and has been extensively studied [2,
10]. Elastic Weight Consolidation (EWC) [8] penalizes changes to
parameters important for prior tasks using the Fisher information
matrix. Learning without Forgetting [9] uses knowledge distillation
as a regularizer. Our work complements these by focusing on the
data mixing approach.

Loss Landscape Geometry. Sharpness-Aware Minimization [1]
explicitly seeks flat minima. Kalra et al. [7] introduce relative critical
sharpness as a scalable curvature measure for LLMs and connect it
to forgetting. Our framework builds on this by deriving the critical
mixing fraction from curvature properties.

Data Mixing Strategies. DoReMi [12] optimizes data mixtures
for pre-training. Our work focuses specifically on the pre-training
fraction needed during fine-tuning to prevent forgetting, which is
a distinct but complementary problem.

Scaling Laws. Following the Chinchilla framework [4], we pro-
pose a scaling law for the critical mixing fraction as a function of
model size and domain divergence.

Neural Tangent Kernel. In the infinite-width limit [6], fine-tuning
stays near initialization, naturally preventing forgetting. Our frame-
work quantifies how finite-width models deviate from this regime.
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8 DISCUSSION AND LIMITATIONS

Key Findings. Our results establish that the critical pre-training
fraction is not a single number but a function of model size, domain
divergence, and loss landscape geometry. The phase transition
behavior means that small changes in « near o, can have large
effects on forgetting.

Practical Implications. For practitioners fine-tuning LLMs: (1)
measure domain divergence before choosing a mixing ratio, (2) use
our adaptive algorithm to avoid grid search, and (3) when in doubt,
err on the side of more pre-training data in the mix.

Limitations. Our simulations use small neural networks (up to
19329 parameters), which may not fully capture the dynamics of
billion-parameter LLMs. The linear analytical model, while pro-
viding useful intuition, makes strong assumptions about quadratic
loss surfaces. The scaling law extrapolation to LLM scale requires
validation with larger models. Additionally, we study regression
tasks with synthetic data; real-world language tasks may exhibit
more complex forgetting patterns.

Future Directions. Extending the framework to transformer ar-
chitectures, studying task-specific forgetting (where different capa-
bilities have different robustness), and validating the scaling law at
billion-parameter scale are important next steps.

9 CONCLUSION

We have presented a principled framework for determining the
critical pre-training data fraction needed to prevent catastrophic
forgetting during fine-tuning. Through analytical derivation and
neural network simulations, we have shown that forgetting exhibits
a phase transition controlled by the ratio of the fine-tuning gradient
magnitude to the pre-training loss curvature. Our adaptive mixing
algorithm provides a practical, grid-search-free approach, and our
scaling law offers predictions for larger model sizes. This work
takes a step toward solving the open problem posed by Kalra et
al. [7] by providing the first systematic framework connecting loss
landscape geometry to the required mixing fraction.
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