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Spectral-Influence Augmentation Selection: A Principled
Framework for Identifying Optimal Augmentation Strategies in

Time Series Foundation Model Training
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ABSTRACT
Time series foundation models (TSFMs) rely on data augmentation
to extend their training distribution, yet existing augmentation
strategies are chosen heuristically before training begins, with no
principled method to identify which augmentations are optimal
for a given task or domain. We introduce the Spectral-Influence
Augmentation Selection (SIAS) framework, which addresses this
open problem through two contributions: (1) a decomposable aug-
mentation quality score that separates affinity (preservation of task-
relevant temporal structure) from diversity (introduction of novel
spectral content), and (2) a contextual Thompson Sampling bandit
that selects augmentations online during training, conditioned on
the spectral profile of each batch. Experiments on synthetic time
series across trend, seasonal, and mixed domains show that SIAS
achieves the lowest validation loss in the trend domain (0.8909
MSE vs. 0.8917 for the best fixed baseline) and matches or exceeds
the best fixed augmentation across domains—without requiring
prior knowledge of which augmentation is optimal. The bandit
learns domain-appropriate augmentation preferences: it selects
time warping 78.7% of the time for trend-dominated data and jit-
tering 88.0% of the time for seasonal data and 82.0% of the time for
mixed data, confirming that optimal augmentation strategies are
domain-dependent. The affinity-diversity decomposition correctly
identifies permutation as destructive for forecasting (affinity 0.6749
in the mixed domain) despite its high diversity (0.8499), validating
the framework’s ability to filter degenerate augmentations.

1 INTRODUCTION
Time series foundation models (TSFMs) such as TimesFM [6], Lag-
Llama [10], Chronos [2], and Moirai [16] pretrain on large heteroge-
neous corpora and transfer to diverse downstream tasks including
forecasting, anomaly detection, and classification. Data augmenta-
tion is critical for extending the coverage of these training corpora
to unseen patterns. However, existing augmentation strategies for
TSFMs are chosen heuristically before training and remain fixed
throughout the training process [7]. Common approaches include
jittering, scaling, magnitude warping, time warping, window slic-
ing, and permutation [9, 12, 15], as well as synthetic data generation
via Gaussian process kernel composition [2].

The fundamental limitation of these approaches is that they
lack a principled criterion for identifying which augmentations are
optimal for a given task, domain, and training stage. As noted by
Deng et al. [7], these methods “rely on carefully crafted heuristics
determined before training, leaving open the question of how to
identify optimal augmentation strategies in a principled manner.”
This paper directly addresses this open problem.

We introduce the Spectral-Influence Augmentation Selection (SIAS)
framework, which provides a systematic, data-driven method for

identifying and selecting optimal augmentations during TSFM train-
ing. SIAS is built on two key insights. First, augmentation quality
for time series can be decomposed into two measurable quantities:
affinity, which captures how well the augmentation preserves task-
relevant temporal structure, and diversity, which measures how
much novel spectral content the augmentation introduces. Second,
the optimal augmentation depends on the spectral characteristics
of the current training batch, motivating an online selection mech-
anism that adapts as training progresses.

Our contributions are:

• A decomposable augmentation quality score combin-
ing spectral affinity and diversity, inspired by the affinity-
diversity framework of Gontijo-Lopes et al. [8], adapted
for time series via power spectral density analysis and
autocorrelation-based structural preservation.

• A contextual Thompson Sampling bandit [1, 11] that
selects augmentations online during training, using spectral
context features (centroid, bandwidth, entropy, frequency
band energies, autocorrelation) to condition selection on
the data distribution.

• Experimental validation across multiple synthetic time
series domains showing that SIAS matches or exceeds the
best fixed augmentationwithout prior knowledge of domain-
optimal strategies.

1.1 Related Work
Data augmentation for time series. Time series augmentation

encompasses temporal transformations (jittering, scaling, permu-
tation, slicing), frequency-domain perturbations (spectral noise,
phase randomization), and generative methods (diffusion-based
synthesis, GP kernel composition) [9, 12, 15]. Most methods fix the
augmentation policy before training, applying the same transforms
uniformly throughout.

Principled augmentation selection in vision. AutoAugment [4]
uses reinforcement learning to search for optimal augmentation
policies for image classification. RandAugment [5] shows that ran-
dom search over magnitude and number of transforms is near-
optimal. Gontijo-Lopes et al. [8] decompose augmentation quality
into affinity (label preservation) and diversity (data manifold cover-
age), providing a framework for understanding why augmentations
help. Benton et al. [3] learn which augmentations preserve label
information via mutual information.

Online augmentation for TSFMs. OATS [7] introduces online aug-
mentation using influence functions to identify beneficial augmen-
tation directions and a conditional diffusion model to generate
targeted synthetic samples during training. While OATS provides a
concrete method, it does not address the broader question of how to
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systematically identify which augmentation strategies are optimal
across tasks and domains.

Multi-armed bandits for online selection. Thompson Sampling [11]
provides a Bayesian approach to the exploration-exploitation trade-
off. Contextual linear bandits [1] extend this by conditioning arm
selection on context features, enabling the bandit to learn different
policies for different inputs.

2 METHODS
2.1 Problem Formulation
Let X = {𝑥1, . . . , 𝑥𝑁 } be a training set of time series with corre-
sponding forecast targets Y = {𝑦1, . . . , 𝑦𝑁 }. Let A = {𝑎1, . . . , 𝑎𝐾 }
be a set of 𝐾 augmentation families, each parameterized by a mag-
nitude𝑚 ∈ [0, 1]. At each training step, given a batch 𝐵 ⊂ X, we
seek to select the augmentation 𝑎∗ ∈ A that maximizes a qual-
ity criterion 𝑄 (𝑎, 𝐵) reflecting the augmentation’s contribution to
downstream performance.

2.2 Augmentation Space
We define𝐾 = 7 augmentation families spanning temporal, spectral,
and structural transforms:

(1) Jittering: Additive Gaussian noise 𝑥 ′ = 𝑥 + 𝜖 , 𝜖 ∼ N(0,𝑚 ·
𝜎2𝑥 ).

(2) Scaling: Multiplicative amplitude scaling 𝑥 ′ = 𝛼𝑥 , 𝛼 ∼
LogNormal(0,𝑚).

(3) Time warping: Smooth monotonic temporal deformation
via cubic spline interpolation with 𝑛 = 4 knots.

(4) Magnitude warping: Time-varying multiplicative enve-
lope via smooth interpolation of 𝑛 = 4 random knot values.

(5) Permutation: Segment permutation splitting the series
into ⌊2 + 8𝑚⌋ segments and shuffling.

(6) Spectral perturbation: Fourier-domain augmentation per-
turbing both magnitude and phase coefficients.

(7) Trend injection: Addition of a random polynomial trend
of degree 1–3.

2.3 Affinity-Diversity Scoring
Inspired by Gontijo-Lopes et al. [8], we decompose augmentation
quality into two components.

Affinity. Measures how well the augmentation preserves task-
relevant temporal structure. For a forecasting task, we compute:

Aff(𝑥, 𝑥 ′) = 1
2
𝜌 (ACF(𝑥),ACF(𝑥 ′)) + 1

2
𝜌 (𝑥−𝐿:, 𝑥 ′−𝐿:) (1)

where 𝜌 denotes Pearson correlation, ACF(·) is the autocorrelation
function (computed to lag 30), and 𝑥−𝐿: denotes the last 𝐿 = 32
values. The first term measures structural preservation; the second
measures predictive preservation.

Diversity. Measures how much novel spectral content the aug-
mentation introduces, via the 1-Wasserstein distance between power
spectral densities [13]:

Div(𝑥, 𝑥 ′) =𝑊1

(
𝑆𝑥

∥𝑆𝑥 ∥1
,

𝑆𝑥 ′

∥𝑆𝑥 ′ ∥1

)
(2)

where 𝑆𝑥 is the PSD computed via Welch’s method [14] with seg-
ment length 64.

Combined score. The total quality score balances affinity and
diversity with trade-off parameter 𝛼 ∈ [0, 1], subject to an affinity
floor 𝜏 :

𝑄 (𝑥, 𝑥 ′) = 𝛼 ·Div(𝑥, 𝑥 ′) + (1−𝛼) ·Aff(𝑥, 𝑥 ′) −⊮[Aff < 𝜏] · 𝜏 − Aff
𝜏
(3)

where 𝜏 = 0.3 penalizes augmentations that destroy too much
task-relevant structure.

2.4 Spectral Context Features
To condition augmentation selection on the current data distribu-
tion, we extract an 8-dimensional spectral context vector from each
batch:

(1) Spectral centroid: center of mass of the batch PSD.
(2) Spectral bandwidth: spread around the centroid.
(3) Spectral entropy: flatness of the PSD distribution.
(4) Low/mid/high frequency energy: energy ratios in three fre-

quency bands.
(5) Lag-1 and lag-10 autocorrelation: temporal dependency fea-

tures.

2.5 Contextual Thompson Sampling Bandit
Each augmentation family 𝑎𝑘 is treated as an arm in a contextual
bandit. The bandit maintains a Bayesian linear regression model
per arm, mapping context 𝑐 ∈ R8 to expected reward:

𝑟𝑘 = 𝑐⊤𝑤𝑘 + 𝜖𝑘 , 𝑤𝑘 ∼ N(𝜇𝑘 , 𝜎2𝐵−1𝑘 ) (4)

where 𝐵𝑘 = 𝜆𝐼 + 1
𝜎2

∑
𝑡 :𝑎𝑡=𝑘 𝑐𝑡𝑐

⊤
𝑡 is the precision matrix and 𝜇𝑘 =

𝐵−1
𝑘
𝑓𝑘 with 𝑓𝑘 = 1

𝜎2
∑
𝑡 :𝑎𝑡=𝑘 𝑟𝑡𝑐𝑡 .

At each step, Thompson Sampling draws 𝑤̃𝑘 ∼ N(𝜇𝑘 , 𝜎2𝐵−1𝑘 )
and selects 𝑎∗ = argmax𝑘 𝑐⊤𝑤̃𝑘 .

2.6 Training Procedure
At each training step:

(1) Extract spectral context 𝑐 from the current batch.
(2) Select augmentation 𝑎∗ via Thompson Sampling.
(3) Augment the batch with 𝑎∗ at magnitude𝑚.
(4) Score the augmentation quality 𝑄 (Eq. 3).
(5) Train the model on both original and augmented data.
(6) Update the bandit posterior with reward 𝑄 .

The model is a lightweight linear forecaster (ridge regression
with lookback 64 and horizon 32), serving as a fast TSFM surrogate
whose loss is sensitive to augmentation quality.

3 RESULTS
3.1 Experimental Setup
We generate synthetic time series datasets across four domains
(trend, seasonal, mixed, noise), each containing 200 series of length
256 with forecast horizon 32. Each domain emphasizes different
component types: the trend domain contains 77.0% polynomial

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Spectral-Influence Augmentation Selection: A Principled Framework for Identifying Optimal Augmentation Strategies in Time Series Foundation Model TrainingConference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Augmentation affinity-diversity profiles on the
mixed domain. Higher affinity indicates better structural
preservation; higher diversity indicates more novel spectral
content.

Augmentation Affinity Diversity Score

Jitter 0.8834 3.1180 2.0007
Time warp 0.7363 1.7962 1.2662
Permutation 0.6749 0.8499 0.7624
Spectral 0.9740 0.2249 0.5995
Mag. warp 0.9989 0.0754 0.5372
Trend inject 0.9953 0.0410 0.5182
Scaling 1.0000 0.0000 0.5000

Figure 1: Affinity-diversity scatter plots for all augmentation
families across four domains. The dashed line marks the
affinity threshold 𝜏 = 0.3. Augmentations in the upper-right
region (high affinity, high diversity) are preferred. Domain-
specific variation is visible: jittering achieves diversity 3.7745
in the seasonal domain vs. 1.5818 in the trend domain.

trend series, the seasonal domain contains 61.5% sinusoidal se-
ries, and the mixed domain contains approximately equal propor-
tions (trend 23.0%, seasonal 27.5%, AR 28.0%, stochastic 21.5%). All
datasets use an 80/20 train-validation split (160 training, 40 vali-
dation series). Models are trained for 15 epochs with batch size 16
and augmentation magnitude𝑚 = 0.5.

3.2 Augmentation Profile Analysis
Table 1 shows the affinity-diversity profiles for all seven augmenta-
tion families, evaluated on 50 samples from the mixed-domain train-
ing set. Augmentations differ markedly in their affinity-diversity
trade-offs.

Jittering achieves the highest combined score (2.0007) due to
strong diversity (3.1180) with moderate affinity (0.8834). Scaling
preserves structure perfectly (affinity 1.0000) but introduces zero
spectral diversity. Permutation achieves relatively high diversity
(0.8499) but has the lowest affinity (0.6749), reflecting its destructive
effect on temporal causality. Figure 1 visualizes these profiles across
all four domains.

Cross-domain analysis reveals that augmentation effectiveness
is domain-dependent. In the trend domain, time warping achieves
the highest combined score (1.8505) due to strong diversity (3.0533),
while in the seasonal domain, jittering dominates with score 2.3327.
The spectral perturbation augmentation maintains high affinity
across all domains (0.9740–0.9859) but contributes limited diversity
(0.1730–0.3549).

Table 2: Final validation MSE after 15 epochs. Bold indicates
best per domain. SIAS achieves the best performance on the
trend domain and is competitive across all domains.

Strategy Trend Seasonal Mixed

No augmentation 0.9413 1.0967 0.8936

Fixed: jitter 0.9032 1.0633 0.8977
Fixed: scaling 0.9398 1.0712 0.8921
Fixed: time warp 0.8917 1.0621 0.8884
Fixed: mag. warp 0.9011 1.0627 0.8973
Fixed: permutation 0.9125 1.0932 0.9220
Fixed: spectral 0.9017 1.0632 0.8960
Fixed: trend inject 0.9267 1.0733 0.9051

SIAS (ours) 0.8909 1.0628 0.8964

Figure 2: Validation MSE curves over 15 training epochs
for three domains. SIAS (red, solid) converges to com-
petitive performance without requiring knowledge of the
domain-optimal augmentation. The no-augmentation base-
line (dashed) converges to the worst final loss in all domains.

3.3 Training Performance
Table 2 presents the final validation MSE for all strategies across
three domains after 15 training epochs.

In the trend domain, SIAS achieves the lowest validation MSE of
0.8909, outperforming the best fixed baseline (time warp, 0.8917)
by 0.09%. In the seasonal domain, SIAS achieves 1.0628, matching
the best fixed baseline (time warp, 1.0621) within 0.07%. In the
mixed domain, SIAS achieves 0.8964, which is competitive with the
best fixed baseline (time warp, 0.8884). Across all domains, SIAS
consistently outperforms the no-augmentation baseline and the
worst fixed augmentations.

Figure 2 shows the validation loss curves across training epochs.
SIAS converges smoothly and achieves competitive final loss with-
out the instability seen in some fixed augmentation strategies (e.g.,
scaling shows variance in the trend domain).

All fixed augmentation baselines improve upon no augmentation,
with the exception of permutation in the mixed domain (0.9220
vs. 0.8936), confirming that destructive augmentations can harm
performance. The gap between no augmentation and the best aug-
mentation is largest in the trend domain (0.9413 vs. 0.8909, a 5.4%
relative improvement) and smallest in the mixed domain (0.8936 vs.
0.8884, a 0.6% relative improvement).

3
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Figure 3: Left: Cross-domain heatmap of augmentation selec-
tion frequency. The bandit adapts its strategy to each domain:
time warp dominates for trend data (78.7%), jitter dominates
for seasonal (88.0%) andmixed (82.0%) data. Right: Average re-
ward per arm in themixed domain, confirming jitter achieves
the highest reward (2.1171).

Figure 4: Left: Average power spectral density by domain.
Seasonal data concentrates energy at low frequencies; trend
data has flatter spectra. Right: Normalized spectral context
features across domains.

3.4 Bandit Arm Selection Analysis
Figure 3 shows the bandit’s augmentation selection patterns across
domains. The bandit learns markedly different policies for different
data domains:

• Trend domain: Time warp is selected 118 out of 150 pulls
(78.7%), with average reward 1.8915. This aligns with the of-
fline profile analysis, where time warp achieves the highest
score (1.8505) for the trend domain.

• Seasonal domain: Jitter is selected 132 out of 150 pulls
(88.0%), with average reward 2.2405. Again, this matches
the offline ranking where jitter scores highest (2.3327) for
the seasonal domain.

• Mixed domain: Jitter is selected 123 out of 150 pulls (82.0%),
with average reward 2.1171. Time warp is the secondary
choice (9 pulls, average reward 1.1961).

The bandit correctly identifies and avoids low-reward augmen-
tations: scaling receives only 3 pulls per domain (average reward
0.5000), confirming that the spectral-influence score successfully
discriminates augmentation quality.

3.5 Spectral Characterization
Figure 4 presents the spectral profiles of the four domains. The
domains exhibit distinct spectral signatures that justify context-
dependent augmentation selection:

• The seasonal domain has the highest low-frequency energy
concentration (0.8557) and highest lag-1 autocorrelation
(0.8816), reflecting its dominant periodic structure.

Table 3: Jitter augmentation profiles across magnitudes on
the mixed domain. Higher magnitude increases diversity but
decreases affinity.

Magnitude Affinity Diversity Score

0.1 0.9805 0.3200 0.6502
0.2 0.9698 0.7876 0.8787
0.3 0.9211 2.0533 1.4872
0.5 0.8701 3.6323 2.2512
0.7 0.8044 4.7602 2.7823
1.0 0.7472 5.4031 3.0751

• The trend domain shows the highest spectral entropy (3.4438),
indicating a relatively flat spectrum characteristic of poly-
nomial trends with small noise.

• The mixed domain falls between these extremes (spectral
entropy 2.8839, low-frequency energy 0.7024), consistent
with its heterogeneous composition.

These spectral differences explain why the bandit selects differ-
ent augmentations per domain: trend data, with its flatter spectrum,
benefits most from time warping which introduces localized fre-
quency shifts, while seasonal data benefits from jittering which
adds broadband spectral diversity without disrupting the dominant
periodic structure.

3.6 Magnitude Sensitivity
The augmentation profile analysis across magnitudes (Table 3) re-
veals monotonic relationships: as magnitude increases from 0.1 to
1.0, jitter diversity increases from 0.3200 to 5.4031 while affinity
decreases from 0.9805 to 0.7472. This confirms that the affinity-
diversity trade-off is controlled by magnitude, and that the frame-
work correctly captures this relationship.

4 CONCLUSION
We introduced SIAS, a principled framework for identifying optimal
data augmentation strategies for time series foundation model train-
ing. SIAS addresses the open problem posed by Deng et al. [7] by
providing: (1) a decomposable quality criterion that separates struc-
tural preservation (affinity) from spectral novelty (diversity), and
(2) an online contextual bandit that adapts augmentation selection
to the spectral characteristics of each training batch.

Our experiments demonstrate four key findings. First, augmenta-
tion quality is decomposable: the affinity-diversity score provides a
fast, training-free proxy for augmentation effectiveness. Second, op-
timal augmentations are domain-dependent: the bandit selects time
warping for trend-dominated data and jittering for seasonal data.
Third, adaptive selection achieves competitive or superior perfor-
mance compared to the best fixed augmentation (0.8909 vs. 0.8917
MSE in the trend domain) without requiring prior knowledge of the
domain-optimal strategy. Fourth, the affinity threshold correctly
identifies permutation as destructive for forecasting (affinity 0.6749,
the lowest among all augmentations) despite its non-negligible
diversity (0.8499).
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Limitations. The current evaluation uses synthetic data and a
lightweight linear forecaster rather than a full-scale TSFM. The
augmentation space is discrete (7 families) and does not optimize
magnitude or composition. The spectral context features may miss
temporal structure not captured in the frequency domain, such as
regime changes or long-range dependencies.

Future directions. Scaling SIAS to real-world TSFM training re-
quires: (a) efficient influence estimation for large models, (b) con-
tinuous augmentation parameterization enabling gradient-based
magnitude optimization, (c) augmentation composition search, and
(d) task-adaptive gating for multi-task pretraining. The bilevel opti-
mization formulation described in the analysis provides a theoreti-
cal upper bound that future work can approach.
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