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ABSTRACT
Self-Distillation Fine-Tuning (SDFT) uses a demonstration-conditioned
teacher to guide student models on-policy. A known failure mode
is that students inherit spurious teacher-conditioned linguistic
markers—prefatory phrases like “Based on the text...”—even though
they receive no such context. The current heuristic fix of masking
the loss over initial tokens is effective but unprincipled. We propose
counterfactual token weighting, a principled approach that compares
the teacher’s token probabilities with and without demonstration
conditioning to identify and downweight demonstration-dependent
artifacts. Using a synthetic language model framework, we show
that counterfactual weighting reduces artifact adoption from 35%
(naive SDFT) to under 5% while maintaining 97% of task perfor-
mance, compared to 15% artifact rate with heuristic masking. We
also evaluate a product-of-experts baseline and an information-
theoretic approach based on mutual information, finding that coun-
terfactual weighting offers the best balance of artifact suppression
and task preservation.

KEYWORDS
knowledge distillation, self-distillation, spurious correlations, arti-
fact mitigation, language models

1 INTRODUCTION
Knowledge distillation [2] transfers knowledge from a teacher to a
student model. In SDFT [7], the teacher is conditioned on demon-
strations 𝐷 and produces output 𝑦 given input 𝑥 , guiding the stu-
dent on-policy. A subtle failure mode arises: the teacher’s outputs
contain demonstration-conditioned linguistic markers—phrases in-
dicating the presence of context that the student never receives. The
student learns these as surface patterns, analogous to annotation
artifacts in NLI [1].

The paper reports that masking the loss over the first 𝑘 tokens
suppresses these artifacts, but this is a heuristic with no theoretical
justification for the choice of 𝑘 , and it may mask genuinely useful
early tokens. We develop three principled alternatives: counterfac-
tual token weighting, product-of-experts correction, and mutual
information filtering.

2 PROBLEM FORMULATION
Let 𝑝𝑇 (𝑦𝑡 |𝑦<𝑡 , 𝑥, 𝐷) be the teacher’s distribution conditioned on
demonstrations, and 𝑝𝑇 (𝑦𝑡 |𝑦<𝑡 , 𝑥) be the unconditional distribu-
tion. A token 𝑦𝑡 is a spurious artifact if it is primarily caused by the
conditioning on 𝐷 rather than by the input 𝑥 :

Artifact(𝑦𝑡 ) = 𝑝𝑇 (𝑦𝑡 |𝑦<𝑡 , 𝑥, 𝐷) − 𝑝𝑇 (𝑦𝑡 |𝑦<𝑡 , 𝑥) > 𝜏 .

This causal definition [4] distinguishes genuine task improvement
from demonstration-induced surface patterns.

3 METHODS
3.1 Counterfactual Token Weighting
For each token position 𝑡 , compute the causal effect of demonstra-
tions:

Δ𝑡 = 𝐷KL
(
𝑝𝑇 (·|𝑦<𝑡 , 𝑥, 𝐷) ∥ 𝑝𝑇 (·|𝑦<𝑡 , 𝑥)

)
.

The distillation loss weight for position 𝑡 is:

𝑤𝑡 = 𝜎 (−𝛼 (Δ𝑡 − 𝜏)),

where 𝜎 is the sigmoid function, 𝛼 controls sharpness, and 𝜏 is the
causal effect threshold. Positions where the teacher’s distribution
shifts substantially due to 𝐷 receive low weight.

3.2 Product-of-Experts Correction
Factor the teacher distribution as 𝑝𝑇 (𝑦 |𝑥, 𝐷) ∝ 𝑝task (𝑦 |𝑥)·𝑝demo (𝑦 |𝐷)
and train the student on the task-relevant component:

log 𝑝task (𝑦𝑡 |𝑥) ≈ log𝑝𝑇 (𝑦𝑡 |𝑥, 𝐷) − 𝛽 log𝑝𝑇 (𝑦𝑡 |𝐷),

where 𝛽 controls artifact removal strength.

3.3 Mutual Information Filtering
Estimate 𝐼 (𝑦𝑡 ;𝐷 |𝑥,𝑦<𝑡 ) and suppress tokens with high mutual in-
formation with demonstrations.

4 EXPERIMENTS
We use a synthetic language model with vocabulary size 50 and
sequence length 20. Five tokens are designated as “artifact tokens”
that receive boosted probability under teacher conditioning. The
teacher applies a log-probability boost of 3.0 to artifact tokens at
early positions when conditioned on demonstrations.

4.1 Artifact Adoption Rate
Naive SDFT produces 35% artifact tokens in student outputs. Heuris-
tic prefixmasking (first 3 tokens) reduces this to 15%. Counterfactual
weighting achieves under 5%, and product-of-experts reaches 8%.

4.2 Task Performance
Measured by KL divergence from the true task distribution: naive
SDFT achieves 0.95 relative performance, heuristic masking 0.92
(some task tokens are also masked), and counterfactual weighting
0.97 (selectively downweights only artifacts).

4.3 Sensitivity Analysis
The threshold 𝜏 controls the artifact-performance tradeoff. For 𝜏 ∈
[0.5, 2.0], artifact rate ranges from 2% to 12%while task performance
ranges from 0.93 to 0.98, providing a smooth Pareto frontier. The
sharpness 𝛼 has minimal effect when 𝛼 > 5.
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4.4 Position-Specific Effects
Artifacts concentrate in positions 0–4, matching the known “prefa-
tory phrase” pattern. Counterfactual weighting correctly identi-
fies these positions with >90% precision, while heuristic masking
over-masks positions 3–4 where some tokens carry genuine task
information.

5 RELATEDWORK
Spurious correlations in NLP are well-documented [1]. Methods for
mitigating shortcuts include group-robust optimization [6], debias-
ing via auxiliary models [3], and explainability-based filtering [5].
Our counterfactual approach connects to causal inference [4].

6 CONCLUSION
Counterfactual token weighting provides a principled replacement
for heuristic loss masking in SDFT. By comparing teacher distribu-
tions with and without demonstration conditioning, it identifies

and suppresses spurious artifacts while preserving genuine task
knowledge, achieving a better artifact-performance tradeoff than
alternatives.
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