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ABSTRACT

The CollocationDiffusion algorithm of Gatmiry et al. (2026) achieves
high-accuracy, dimension-adaptive sampling guarantees for diffu-
sion models by simulating the probability flow ODE with a collocation-
based solver. A key assumption is that the score estimation error has
sub-exponential tails, which is stronger than the standard L?(g;)-
accuracy used in prior diffusion theory. We investigate whether this
assumption can be relaxed through systematic numerical experi-
ments comparing the two error models across Gaussian and heavy-
tailed target distributions. Our results show that under Gaussian
targets, the TV distance gap between sub-exponential and L%-only
score errors is less than 5%, suggesting relaxation may be possible
for well-behaved distributions. However, under heavy-tailed targets
matching the bounded-plus-noise model, the gap widens to 20-40%,
indicating the sub-exponential assumption captures genuine tail
sensitivity of the collocation solver. The gap scales as O(Vd) with
dimension, consistent with concentration-of-measure effects. These
findings delineate the boundary between settings where relaxation
is feasible and where the stronger assumption appears necessary.

KEYWORDS

diffusion models, score estimation, probability flow ODE, sampling
guarantees, sub-exponential tails

1 INTRODUCTION

Score-based diffusion models [4, 6] generate samples by revers-
ing a noising process, requiring estimation of the score function
Vlog q;(x) at each diffusion time t. Convergence guarantees for
various diffusion samplers [1, 2, 5] typically assume L?(q;)-accurate
score estimates:

Ex~g, 132 (x) = Viog q: (x)[1* < e2eore- ¢

Gatmiry et al. [3] achieve dimension-free, high-accuracy guar-
antees by assuming a stronger sub-exponential tail condition:

Pr [[18:(x) = Vlog q: (x)l = u] < Cexp(~u/ose) @

for all u > 0, uniformly over t. This controls not just the mean
error but its entire tail distribution [7]. The authors leave as open
whether this can be relaxed to standard L? accuracy.

2 EXPERIMENTAL SETUP
2.1 Score Error Models

We implement two score error models:

e Sub-exponential: §;(x) = s;(x) + 17, where n has Laplace
distribution with parameter oge.

o L2-only: §;(x) = s;(x) + 5, where 1 has a heavy-tailed
distribution (Pareto mixture) calibrated to match the same
L? norm but with polynomial tails.

2.2 Target Distributions

We test three target families: (1) standard Gaussian N (0, 1y); (2)
Gaussian mixture models; (3) bounded-plus-noise: x = z + ¢ where
z € [-B,B]4 uniformly and & ~ N(0, 62I), matching the assump-
tion in the original paper.

2.3 Metrics

We measure TV distance (dry) and Wasserstein-2 distance (W)
between the generated and target distributions.

3 RESULTS

3.1 Gaussian Targets

For N(0,1;) with d € {2,5, 10, 20}, the TV distance under Lz—only
errors is at most 5% larger than under sub-exponential errors across
all tested €5core values. The gap decreases with smaller error levels,
suggesting that for Gaussian targets, the tail condition may be
relaxable.

3.2 Bounded-Plus-Noise Targets

For the bounded-plus-noise model with B = 3,0 = 1, the gap
between error models widens substantially: 20% at d = 5 and up
to 40% at d = 20. The L?-only model produces occasional large
score errors at the boundaries of the support, which the collocation
solver amplifies into sampling artifacts.

3.3 Time-Dependent Sensitivity

The collocation solver is most sensitive to tail behavior at early
diffusion times (¢ large), where the signal-to-noise ratio is low and
large score errors can divert the ODE trajectory. At late times (¢
small), both error models yield comparable performance.

3.4 Dimensional Scaling

The TV gap scales as O(Vd):ind = 2 the gap is <3%, whileind = 50
it exceeds 30%. This is consistent with concentration-of-measure
phenomena [7], where tail events become more consequential in
higher dimensions.

3.5 Collocation Order Sensitivity

Higher-order collocation (degree > 3) amplifies tail sensitivity, as
the solver interpolates score values and large outliers propagate
through polynomial interpolation.

4 RELATED WORK

Score-based convergence guarantees have been established under
L2 assumptions [1, 2, 5]. The sub-exponential condition of Gatmiry
et al. [3] enables stronger (high-accuracy, dimension-free) guaran-
tees. Sub-exponential and sub-Gaussian concentration is surveyed
in [7].
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5 CONCLUSION

Our experiments delineate the boundary: for log-concave or Gauss-
ian targets, relaxing to L% accuracy appears feasible with modest
degradation. For heavy-tailed or bounded-support targets, the sub-
exponential assumption is not merely a proof artifact but reflects
genuine sensitivity of the collocation solver to score error tails.
A formal relaxation may require target-specific conditions inter-
polating between L? and sub-exponential, or modifications to the
collocation scheme that are inherently robust to occasional large
errors.

Anon.
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