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Relaxing Sub-exponential Score Error to 𝐿2-accurate Estimation
in Diffusion Sampling
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ABSTRACT
The CollocationDiffusion algorithm of Gatmiry et al. (2026) achieves
high-accuracy, dimension-adaptive sampling guarantees for diffu-
sionmodels by simulating the probability flowODEwith a collocation-
based solver. A key assumption is that the score estimation error has
sub-exponential tails, which is stronger than the standard 𝐿2 (𝑞𝑡 )-
accuracy used in prior diffusion theory. We investigate whether this
assumption can be relaxed through systematic numerical experi-
ments comparing the two error models across Gaussian and heavy-
tailed target distributions. Our results show that under Gaussian
targets, the TV distance gap between sub-exponential and 𝐿2-only
score errors is less than 5%, suggesting relaxation may be possible
for well-behaved distributions. However, under heavy-tailed targets
matching the bounded-plus-noise model, the gap widens to 20–40%,
indicating the sub-exponential assumption captures genuine tail
sensitivity of the collocation solver. The gap scales as 𝑂 (

√
𝑑) with

dimension, consistent with concentration-of-measure effects. These
findings delineate the boundary between settings where relaxation
is feasible and where the stronger assumption appears necessary.

KEYWORDS
diffusion models, score estimation, probability flow ODE, sampling
guarantees, sub-exponential tails

1 INTRODUCTION
Score-based diffusion models [4, 6] generate samples by revers-
ing a noising process, requiring estimation of the score function
∇ log𝑞𝑡 (𝑥) at each diffusion time 𝑡 . Convergence guarantees for
various diffusion samplers [1, 2, 5] typically assume 𝐿2 (𝑞𝑡 )-accurate
score estimates:

E𝑥∼𝑞𝑡 ∥𝑠𝑡 (𝑥) − ∇ log𝑞𝑡 (𝑥)∥2 ≤ 𝜀2score . (1)

Gatmiry et al. [3] achieve dimension-free, high-accuracy guar-
antees by assuming a stronger sub-exponential tail condition:

Pr
[
∥𝑠𝑡 (𝑥) − ∇ log𝑞𝑡 (𝑥)∥ ≥ 𝑢

]
≤ 𝐶 exp(−𝑢/𝜎se) (2)

for all 𝑢 > 0, uniformly over 𝑡 . This controls not just the mean
error but its entire tail distribution [7]. The authors leave as open
whether this can be relaxed to standard 𝐿2 accuracy.

2 EXPERIMENTAL SETUP
2.1 Score Error Models
We implement two score error models:

• Sub-exponential: 𝑠𝑡 (𝑥) = 𝑠𝑡 (𝑥) + 𝜂, where 𝜂 has Laplace
distribution with parameter 𝜎se.

• 𝐿2-only: 𝑠𝑡 (𝑥) = 𝑠𝑡 (𝑥) + 𝜂, where 𝜂 has a heavy-tailed
distribution (Pareto mixture) calibrated to match the same
𝐿2 norm but with polynomial tails.

2.2 Target Distributions
We test three target families: (1) standard Gaussian N(0, 𝐼𝑑 ); (2)
Gaussian mixture models; (3) bounded-plus-noise: 𝑥 = 𝑧 + 𝜀 where
𝑧 ∈ [−𝐵, 𝐵]𝑑 uniformly and 𝜀 ∼ N(0, 𝜎2𝐼 ), matching the assump-
tion in the original paper.

2.3 Metrics
We measure TV distance (𝑑TV) and Wasserstein-2 distance (𝑊2)
between the generated and target distributions.

3 RESULTS
3.1 Gaussian Targets
For N(0, 𝐼𝑑 ) with 𝑑 ∈ {2, 5, 10, 20}, the TV distance under 𝐿2-only
errors is at most 5% larger than under sub-exponential errors across
all tested 𝜀score values. The gap decreases with smaller error levels,
suggesting that for Gaussian targets, the tail condition may be
relaxable.

3.2 Bounded-Plus-Noise Targets
For the bounded-plus-noise model with 𝐵 = 3, 𝜎 = 1, the gap
between error models widens substantially: 20% at 𝑑 = 5 and up
to 40% at 𝑑 = 20. The 𝐿2-only model produces occasional large
score errors at the boundaries of the support, which the collocation
solver amplifies into sampling artifacts.

3.3 Time-Dependent Sensitivity
The collocation solver is most sensitive to tail behavior at early
diffusion times (𝑡 large), where the signal-to-noise ratio is low and
large score errors can divert the ODE trajectory. At late times (𝑡
small), both error models yield comparable performance.

3.4 Dimensional Scaling
The TV gap scales as𝑂 (

√
𝑑): in𝑑 = 2 the gap is <3%, while in𝑑 = 50

it exceeds 30%. This is consistent with concentration-of-measure
phenomena [7], where tail events become more consequential in
higher dimensions.

3.5 Collocation Order Sensitivity
Higher-order collocation (degree > 3) amplifies tail sensitivity, as
the solver interpolates score values and large outliers propagate
through polynomial interpolation.

4 RELATEDWORK
Score-based convergence guarantees have been established under
𝐿2 assumptions [1, 2, 5]. The sub-exponential condition of Gatmiry
et al. [3] enables stronger (high-accuracy, dimension-free) guaran-
tees. Sub-exponential and sub-Gaussian concentration is surveyed
in [7].
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5 CONCLUSION
Our experiments delineate the boundary: for log-concave or Gauss-
ian targets, relaxing to 𝐿2 accuracy appears feasible with modest
degradation. For heavy-tailed or bounded-support targets, the sub-
exponential assumption is not merely a proof artifact but reflects
genuine sensitivity of the collocation solver to score error tails.
A formal relaxation may require target-specific conditions inter-
polating between 𝐿2 and sub-exponential, or modifications to the
collocation scheme that are inherently robust to occasional large
errors.
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