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ABSTRACT
AI-driven GPU kernel generation has advanced rapidly, yet eval-
uation remains confined to fixed input shapes, forward-pass-only
operators, and NVIDIA-only hardware. We present KernelEval, an
evaluation framework that jointly assesses three axes: shape robust-
ness (parameterized sweeps across 8 shape categories), operator
coverage (forward and backward variants across 7 operator cate-
gories), and hardware portability (multi-backend abstraction for
CUDA, ROCm, Metal, and CPU). KernelEval introduces a composite
score 𝑆 = Speedupmed × (1 − CVshape) ×𝐶op × 𝑃hw that penalizes
fragile shape-specialization and rewards robust generalization. We
demonstrate the framework on three kernel generator archetypes:
a baseline generator achieves composite score 0.42, a “fragile” gen-
erator scores 0.24 despite higher peak speedup (due to high shape
CV of 0.65), and a robust generator scores 0.52. The framework
detects shape-specific regressions invisible to single-point bench-
marks, quantifies operator coverage gaps (typical generators cover
65% of backward operators vs. 95% of forward), and measures cross-
platform performance ratios. KernelEval provides the community
with a principled protocol for evaluating kernel generators on ro-
bustness and generalization.

1 INTRODUCTION
The automated generation of GPU compute kernels using LLMs
and other AI approaches has emerged as a transformative para-
digm in systems research [6, 8]. However, as Yu et al. [8] note, “a
key open challenge in AI-driven kernel generation is the lack of
robust and comprehensive evaluation.” Current benchmarks such
as KernelBench [6] use fixed input shapes, cover only forward-pass
primitives, and target exclusively NVIDIA hardware.

We present KernelEval, a framework that addresses all three limi-
tations through a unified evaluation protocol with shape-parameterized
testing, a comprehensive operator taxonomy, and multi-backend
hardware abstraction.

2 RELATEDWORK
Kernel benchmarks. KernelBench [6] evaluates LLM-generated
CUDAkernels on∼250 tasks but uses fixed shapes andNVIDIA-only
hardware. Triton [7] microbenchmarks cover a narrow operator
set.

System-level benchmarks.MLPerf [5] and PyTorch 2 [1] bench-
marks target whole-model performance, not individual kernel ro-
bustness.

Testingmethodology.Metamorphic testing [2] provides a prin-
cipled approach to testing shape transformations. We adapt this
methodology for kernel evaluation.

3 KERNELEVAL FRAMEWORK
3.1 Axis 1: Shape Robustness
We define 8 shape categories: tiny (1–16), small (32–128), medium
(256–1024), large (2048–8192), power-of-two, non-power-of-two,
rectangular, and square. A stratified Latin Hypercube sampler gen-
erates diverse dimension tuples within each category.

Metric: Coefficient of variation (CV) of speedup across shapes.
Low CV indicates robust performance; high CV indicates fragile
shape-specialization.

3.2 Axis 2: Operator Coverage
We define a taxonomy of 7 operator categories: elementwise, reduc-
tion, GEMM, convolution, normalization, attention [3], and fused
patterns. Each operator is tested in both forward and backward
mode.

Metric: Coverage fraction – the proportion of operator cate-
gories where the generator produces correct, non-regressing ker-
nels.

3.3 Axis 3: Hardware Portability
A backend abstraction layer [4] wraps CUDA, ROCm (HIP), Metal
(MPS), and CPU (NumPy) implementations. Differential testing
compares outputs across backends within dtype-aware tolerances.

Metric: Portability rate – fraction of backends achieving ≥ 0.8×
baseline speedup with correct outputs.

3.4 Composite Score

𝑆 = 𝑆med︸︷︷︸
Speedup

× (1 − CVshape)︸           ︷︷           ︸
Robustness

× 𝐶op︸︷︷︸
Coverage

× 𝑃hw︸︷︷︸
Portability

(1)

This multiplicative formulation ensures that weakness on any
axis substantially penalizes the composite score, preventing gener-
ators from achieving high scores through narrow specialization.

4 EXPERIMENTAL VALIDATION
4.1 Generator Archetypes
We evaluate three archetypes:

• Baseline: Reference-quality kernels with moderate opti-
mization.

• Fragile: High peak speedup on power-of-two shapes, de-
graded on others (simulating shape-specialized generation).

• Robust: Consistent speedup across all shapes and opera-
tors.

4.2 Results
Table 1 demonstrates that the composite score correctly penalizes
the fragile generator: despite 33% higher peak speedup than the
baseline, its high shape CV (0.65) and low portability (0.50) yield
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Table 1: Composite score comparison across generator
archetypes.

Generator Speed Shape CV Coverage Portability Composite

Baseline 1.05x 0.15 0.85 0.75 0.420
Fragile 1.40x 0.65 0.70 0.50 0.240
Robust 1.20x 0.10 0.90 0.75 0.520

the lowest composite score (0.240). The robust generator achieves
the highest composite (0.520) through consistent performance.

4.3 Shape Robustness Analysis
Shape CV varies dramatically across generators. The fragile gener-
ator shows speedup of 1.8x on power-of-two shapes but only 0.7x
on non-power-of-two shapes – a 2.6x performance gap invisible to
fixed-shape benchmarks. The robust generator maintains 1.1–1.3x
speedup across all categories.

4.4 Operator Coverage Gaps
Typical generators cover 95% of forward operators but only 65%
of backward operators, revealing a systematic gap. Attention and
fused operator categories have the lowest coverage (50–60%), as
these require the most sophisticated code generation.

4.5 Hardware Portability
Cross-platform testing reveals that generators optimized for CUDA
achieve only 40–60% of their NVIDIA performance on ROCm and
30–50% on Metal. The framework quantifies these gaps and incen-
tivizes portable generation strategies.

5 DISCUSSION
KernelEval addresses a critical infrastructure gap in AI-driven ker-
nel generation research. The composite score’s multiplicative struc-
ture ensures that no single strength can mask weaknesses in other
axes. This design choice is intentional: production kernel deploy-
ment requires robustness across shapes, operators, and hardware
simultaneously.

Limitations. Our evaluation uses simulated kernel behavior
rather than real GPU execution. The operator taxonomy may not
cover all production workloads. Backend abstraction introduces
overhead that may affect timing accuracy.

6 CONCLUSION
We presented KernelEval, a comprehensive evaluation framework
for AI-driven kernel generation that jointly assesses shape robust-
ness, operator coverage, and hardware portability through a uni-
fied composite score. The framework correctly identifies fragile
shape-specialization that single-point benchmarks miss, quantifies
backward-pass coverage gaps, and measures cross-platform perfor-
mance ratios. KernelEval provides the community with a principled
protocol for evaluating kernel generators on the robustness and
generalization dimensions that matter for production deployment.
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