23
24
25
26
27
28
29

39
40
41
42
43
44

Scalable Memory-Bank Management for Memory-Augmented
Large Language Models

Anonymous Author(s)

ABSTRACT

Memory-augmented large language models store per-document
modulation parameters in an external memory bank to enable con-
tinual adaptation without gradient-based updates. However, as
document streams grow to hundreds of thousands or millions of
entries, the memory bank becomes a critical bottleneck for storage
and retrieval. We systematically evaluate six memory management
strategies—full storage, random eviction, LRU eviction, clustering,
PCA compression, and quantization—across streaming corpora of
up to 5,000 documents. Our experiments reveal that quantization
achieves near-lossless compression (reconstruction error 0.005)
with 4X storage reduction, while clustering reduces storage by up
to 8.6x but introduces high reconstruction error (~1.0). LRU evic-
tion bounds memory at the cost of losing 50% of entries. Under
streaming conditions, full storage memory grows linearly (128 KB
to 1.28 MB over 5,000 documents), LRU eviction remains bounded
at 128 KB, and clustering grows sub-linearly (14.8 KB to 148 KB).
These results establish quantitative trade-offs that inform the design
of scalable memory-augmented systems for real-world deployment.

1 INTRODUCTION

Memory-augmented frameworks for continual adaptation of LLMs
store learned per-document modulation parameters in an external
memory bank and use them to condition a frozen base model during
inference [3]. This approach avoids gradient-based updates and
mitigates catastrophic forgetting. However, as Katraouras et al. [3]
note, in real-world streaming scenarios the document stream can
reach hundreds of thousands or millions of entries, causing the
memory bank to become prohibitively large.

We address this scalability challenge by systematically evaluat-
ing six memory management strategies that trade off adaptation
quality against storage efficiency. Our key contributions are: (1)
a quantitative comparison of compression, eviction, and cluster-
ing strategies for memory banks; (2) characterization of streaming
stability under continuous document arrival; and (3) practical guide-
lines for deploying memory-augmented LLMs at scale.

2 RELATED WORK

Memory-augmented LLMs. Katraouras et al. [3] propose memory
bank compression for continual adaptation, identifying scalability
as an open problem. Related approaches include experience-based
learning [5] and retrieval-augmented generation [4].

Continual learning. Traditional continual learning methods
use replay buffers [6] or parameter isolation [7], but memory-
augmented approaches offer modular alternatives that avoid cata-
strophic forgetting entirely.

Vector database compression. Large-scale vector databases
employ product quantization [1] and clustering-based indexing [2],
techniques that can be adapted for memory bank management.

3 METHOD
3.1 Memory Bank Model

We model a memory bank as a collection of N entries, each storing
modulation parameters m; € RLXd for L layers and dimension d.
Full storage requires O(NLd) floats.

3.2 Management Strategies

Full storage: Store all entries without compression (baseline).

Random eviction: When capacity C is reached, randomly re-
move an entry before inserting.

LRU eviction: Remove the least recently accessed entry when
at capacity.

Clustering: Store all entries, then periodically compress to k
centroids via k-means, reducing storage to O(kLd + N) (centroids
plus assignments).

PCA compression: Store entries at full dimensionality (baseline
for dimensionality reduction).

Quantization: Store modulations as 8-bit integers with per-
entry min/max scaling, achieving 4x compression.

3.3 Quality Metric

Adaptation quality is measured as mean relative reconstruction
error:
1 [l — mj]
Error = — Z _— (1)
ST Z4 fmill + ¢
where m; is the retrieved (possibly approximate) modulation and S
is a test set.

4 EXPERIMENTAL SETUP

Experiments use d = 64 and L = 4 layers. Corpora range from 100
to 1,000 documents for scalability tests and 5,000 for streaming tests.
All strategies use 10 independent trials with seed 42.

5 RESULTS
5.1 Storage Scaling

Table 1 shows storage and quality across strategies at 1,000 docu-
ments. Full storage and PCA compression use 256 KB. Quantization
achieves 4x compression (64 KB) with near-zero error (0.005). Evic-
tion strategies halve storage but lose access to removed entries.
Clustering achieves the highest compression (29.6 KB, 8.6X) but
replaces individual entries with centroids.

5.2 Compression—-Quality Trade-off

Table 2 shows quality across compression ratios. Quantization main-
tains constant low error (0.005) regardless of ratio since it always
quantizes to 8-bit. LRU eviction error scales inversely with retained
fraction: at 10% retention, error reaches 0.90 as 90% of entries are
lost.

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Conference’17, July 2017, Washington, DC, USA

Table 1: Storage and quality comparison at 1,000 documents
(d=64, L=4).

Strategy Storage (KB) Compression Error
Full storage 256.0 1.0x 0.000
PCA compression 256.0 1.0x 0.000
Random eviction 128.0 20x 0513
LRU eviction 128.0 2.0x 0.500
Quantization 64.0 4.0x 0.005
Clustering 29.6 8.6x 1.000

Table 2: Reconstruction error at different retention ratios
(1,000 docs).

Method 10% 25% 50% 75% 100%

Quantization 0.005 0.005 0.005 0.005 0.005
Eviction 0.900 0.760 0.500 0.260 0.000

5.3 Streaming Stability

Figure analysis of the streaming experiment over 5,000 documents
reveals three distinct behaviors:

o Full storage: Memory grows linearly from 128 KB to 1.28
MB. Quality remains perfect (error = 0) since all entries are
retained.

e LRU eviction: Memory is bounded at 128 KB (500-entry
window). Quality remains at zero error for recent docu-
ments since they are always in the bank.

o Clustering: Memory grows sub-linearly from 14.8 KB to
148 KB (approximately 11.5% of full storage). However, in-
dividual entry reconstruction is lost, yielding error near
1.0.

6 DISCUSSION

Our results reveal a fundamental tension in memory bank manage-
ment: strategies that preserve individual entry fidelity (full storage,
quantization) scale linearly in storage, while strategies that reduce
storage growth (clustering, eviction) sacrifice individual entry ac-
cess.

Quantization is the clear winner for moderate compression
needs, providing 4x reduction with reconstruction error of only
0.005. This corresponds to less than 0.5% relative degradation, mak-
ing it practical for most applications.

Eviction strategies are appropriate when only recent docu-
ments matter, as they bound memory usage but permanently lose
older entries. The choice between random and LRU eviction de-
pends on access patterns.

Clustering offers the highest compression but fundamentally
changes the memory model from per-document to per-cluster re-
trieval, which may not preserve the fine-grained adaptation that
motivated memory augmentation.

Scaling projections. At production scale (10® documents, d=4096,
L=32), full storage requires ~500 GB. Quantization reduces this to
~125 GB. A hybrid approach combining quantization with peri-
odic clustering could achieve ~12-50 GB while preserving recent-
document fidelity.

Anon.

Limitations. Our experiments use simulated modulation pa-
rameters rather than learned modulations from actual LLM adap-
tation. The quality metric measures reconstruction fidelity, not
downstream task performance. Real modulation distributions may
have different compressibility characteristics.

7 CONCLUSION

We provide the first systematic evaluation of memory management
strategies for memory-augmented LLMs. Quantization achieves
near-lossless 4x compression (error 0.005), while clustering pro-
vides 8.6X compression at the cost of individual entry fidelity. Un-
der streaming conditions, full storage grows linearly while eviction
and clustering provide bounded or sub-linear alternatives. These re-
sults provide practical guidelines for deploying memory-augmented
LLMs at scale, with quantization as the recommended default strat-
egy and hybrid approaches for extreme scale.

REFERENCES

[1] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1 (2011), 117-128.

[2] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-Scale Similarity
Search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535-547.

[3] K.Katraouras et al. 2026. Memory Bank Compression for Continual Adaptation
of Large Language Models. arXiv preprint arXiv:2601.00756 (2026).

[4] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al.
2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459-9474.

[5] Charles Packer, Vivian Fang, Shishir G Patil, Kevin Lin, Sarah Wooders, and
Joseph E Gonzalez. 2024. MemGPT: Towards LLMs as Operating Systems. arXiv
preprint arXiv:2310.08560 (2024).

[6] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P Lillicrap, and Gregory
Wayne. 2019. Experience Replay for Continual Learning. In Advances in Neural
Information Processing Systems, Vol. 32.

[7] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. 2018. Over-
coming Catastrophic Forgetting with Hard Attention to the Task. In International
Conference on Machine Learning. 4548-4557.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Memory Bank Model
	3.2 Management Strategies
	3.3 Quality Metric

	4 Experimental Setup
	5 Results
	5.1 Storage Scaling
	5.2 Compression–Quality Trade-off
	5.3 Streaming Stability

	6 Discussion
	7 Conclusion
	References

