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Self-Distillation Policy Optimization for Alignment in
Open-Ended and Continuous-Reward Settings: A Simulation

Study
Anonymous Author(s)

ABSTRACT
Self-Distillation Policy Optimization (SDPO) distills a feedback-
conditioned self-teacher into the policy via token-level KL mini-
mization, achieving dense credit assignment from rich textual feed-
back. While SDPO has demonstrated strong results in verifiable
domains such as code generation, its efficacy in open-ended text
generation and continuous-reward tasks—where no ground-truth
verifier exists—remains an open empirical question. We address this
question through a controlled simulation study that isolates SDPO’s
retrospectionmechanism from confounds of full-scale LLM training.
Our framework models policies as parameterized token-level distri-
butions over discrete sequences, with a continuous reward function
encoding both local and global quality structure, and feedback
oracles of varying informativeness (binary, ordinal, continuous,
critique). We compare SDPO against REINFORCE and advantage-
weighted baselines across four feedback regimes, six noise levels,
and five random seeds. Results show that SDPO consistently outper-
forms baselines by +0.13 to +0.18 inmean reward across all feedback
types, with credit assignment correlation improving monotonically
from binary (0.703) through critique (0.785) feedback. SDPO ex-
hibits graceful degradation under feedback noise, losing only 2.6%
reward at noise 𝜎=0.5. However, SDPO reduces policy entropy by
15–22% compared to baselines, revealing a diversity–alignment
trade-off in open-ended settings. We propose a hybrid method that
adaptively interpolates between dense (SDPO) and sparse (REIN-
FORCE) credit assignment based on teacher–student KL divergence,
demonstrating improved robustness under heterogeneous feedback
quality. These findings provide the first systematic evidence that
SDPO’s retrospection mechanism generalizes beyond verifiable do-
mains, while identifying diversity preservation as a key challenge
for deployment in open-ended generation tasks.

1 INTRODUCTION
Reinforcement learning from human feedback (RLHF) has become
a central paradigm for aligning large language models (LLMs) with
human preferences [8]. Standard approaches such as Proximal Pol-
icy Optimization (PPO) [10] and Direct Preference Optimization
(DPO) [9] typically operate with sparse, sequence-level reward
signals—a scalar reward or preference ranking for an entire gener-
ated response. This sparse credit assignment creates a fundamental
challenge: the training signal must be implicitly distributed across
all tokens in the sequence, making it difficult for the model to
identify which specific tokens or phrases drove the overall quality
assessment.

Recent work on Self-Distillation Policy Optimization (SDPO) [6]
addresses this credit assignment bottleneck through a retrospec-
tion mechanism. SDPO conditions the same model on rich textual
feedback (e.g., runtime errors, test results) to form a self-teacher

whose per-token predictions reflect feedback-informed improve-
ments. The unconditioned student policy is then trained to match
the teacher via token-level KL divergence minimization, creating
dense gradient signals that propagate credit to individual token
positions. This approach has shown strong results in verifiable
domains such as code generation, where rich structured feedback
(compilation errors, unit test results) provides a clear signal for
retrospection.

However, many real-world alignment tasks lack a ground-truth
verifier. Open-ended text generation—creative writing, summariza-
tion, instruction following, dialogue—produces outputs where qual-
ity is subjective, multi-dimensional, and often assessed through
continuous or ordinal scales rather than binary pass/fail judgments.
The authors of SDPO explicitly identify this as an open question:
whether the retrospection mechanism can improve alignment when
feedback is textual critique without a ground-truth verifier, and
when rewards are continuous rather than binary [6].

This paper presents a systematic investigation of SDPO in open-
ended and continuous-reward settings through a controlled simu-
lation framework. Our key contributions are:

(1) A simulation framework that isolates SDPO’s coremechanism—
feedback-conditioned self-distillation—from confounds of
full-scale LLM training, enabling precise measurement of
credit assignment quality against known ground truth.

(2) Empirical evidence that SDPO outperforms REINFORCE
and advantage-weighted baselines across all four feedback
types (binary, ordinal, continuous, critique), with credit
assignment quality improving monotonically with feedback
informativeness.

(3) Characterization of the diversity–alignment trade-off: SDPO
achieves superior alignment at the cost of 15–22% entropy
reduction, a meaningful concern for open-ended genera-
tion.

(4) Analysis of noise robustness showing graceful degradation
(only 2.6% reward loss at 𝜎=0.5), with no crossover point
where REINFORCE surpasses SDPO in the tested range.

(5) A hybrid adaptive method that interpolates between dense
and sparse credit assignment based on feedback informa-
tiveness, improving robustness under heterogeneous feed-
back quality.

1.1 Related Work
Self-Distillation for LLM Alignment. Self-distillation in the con-

text of LLM alignment encompasses several recent approaches.
SDPO [6] conditions the teacher on textual feedback, distilling ret-
rospective improvements back into the student. Self-Distillation
Fine-Tuning (SDFT) [12] conditions the teacher on demonstrations
rather than feedback, connecting self-distillation to inverse RL

1
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through the implicit reward 𝑟 (𝑦, 𝑥, 𝑐) = log𝜋 (𝑦 |𝑥, 𝑐) − log𝜋𝑘 (𝑦 |𝑥).
On-Policy Self-Distillation (OPSD) [16] uses ground-truth solutions
as privileged teacher information with generalized Jensen–Shannon
divergence, achieving 4–8× token efficiency over GRPO [11] on
mathematical reasoning. Knowledge distillation [5] provides the
theoretical foundation for all these approaches.

Dense Credit Assignment. The credit assignment problem in
RLHF has been addressed through multiple lenses. Process reward
models (PRMs) [7] train auxiliary models to provide step-level
feedback for mathematical reasoning. GLORE [4] and related token-
level reward models provide dense supervision but require separate
training. SCAR [13] distributes sequence-level rewards via Shap-
ley values, creating dense signals without auxiliary models. Dense
Reward for Free [2] leverages the implicit reward structure of DPO-
trained models. SDPO’s approach is distinctive in deriving dense
credit from the model’s own retrospective analysis conditioned on
feedback, requiring no auxiliary models or combinatorial computa-
tion.

Alignment Beyond Verifiable Domains. Extending RL-based align-
ment to open-ended tasks is an active area. RLVRR [3] decomposes
rewards into verifiable content and style components for open-
ended generation. Rubrics as Rewards [15] uses LLM-synthesized
structured evaluations to drive GRPO on free-form tasks. Consti-
tutional AI [1] and self-rewarding models [14] reduce dependence
on human evaluators through AI-generated feedback. Our work in-
vestigates whether SDPO’s self-distillation mechanism—originally
designed for verifiable feedback—can leverage these noisy, continu-
ous, and subjective feedback signals effectively.

2 METHODS
2.1 Problem Formulation
We study a token-level policy 𝜋𝜃 that generates sequences s =

(𝑠1, . . . , 𝑠𝑇 ) of length 𝑇 over a vocabulary of size 𝑉 . A continuous
reward function 𝑅 : V𝑇 → [0, 1] assigns quality scores to complete
sequences. The reward decomposes into local (per-token quality),
coherence (bigram transitions), and global (pattern matching) com-
ponents:

𝑅(s) = 𝜎

(
1
𝑇

[
𝑇∑︁
𝑡=1

𝑞(𝑡, 𝑠𝑡 ) +
𝑇−1∑︁
𝑡=1

𝑏 (𝑠𝑡 , 𝑠𝑡+1) + 𝛼

𝑇∑︁
𝑡=1

1[𝑠𝑡 = 𝑠∗𝑡 ]
])

(1)

where 𝑞(𝑡, 𝑣) is the per-position token quality, 𝑏 (𝑣, 𝑣 ′) is the bigram
coherence bonus, 𝑠∗ is a soft target pattern, 𝛼 weights the pattern
component, and 𝜎 is the sigmoid function.

The policy is parameterized by position-dependent logits ℓ ∈
R𝑇×𝑉 , giving independent categorical distributions at each posi-
tion: 𝜋𝜃 (𝑠𝑡 = 𝑣) = softmax(ℓ𝑡 )𝑣 . This factored structure enables
precise measurement of per-token credit assignment against known
ground-truth advantages.

2.2 Feedback Oracles
We model four feedback regimes of increasing informativeness:

• Binary: Threshold at 0.5, producing pass/fail (𝑓 ∈ {0, 1}).
• Ordinal: Quantized to a 1–5 Likert scale, normalized to

[0, 1].

• Continuous: The raw (possibly noisy) reward observation.
• Critique: Continuous score plus noisy per-token quality

hints, simulating structured textual critique (e.g., “para-
graph 2 is weak”).

Each oracle adds optional Gaussian noise 𝜖 ∼ N(0, 𝜎2) to the true
reward before quantization, modeling evaluator inconsistency.

2.3 Self-Distillation Policy Optimization (SDPO)
The core SDPO mechanism creates a self-teacher by conditioning
the policy on feedback. Given student logits ℓ and feedback 𝑓 , the
teacher logits are:

ℓteacher𝑡,𝑣 = ℓ𝑡,𝑣 + 𝛽 · 𝑓 · 𝑞(𝑡, 𝑣) (2)

where 𝛽 is the feedback strength parameter controlling how much
the teacher distribution shifts toward higher-quality tokens. For
critique feedback with per-token hints ℎ𝑡 , the shift is position-
specific: ℓteacher𝑡,𝑣 = ℓ𝑡,𝑣 + 𝛽 · 𝑓 · (𝑞(𝑡, 𝑣) − ℎ𝑡 ).

The SDPO gradient minimizes the KL divergence from teacher
to student across all token positions:

∇𝜃LSDPO = − 1
𝑛

𝑛∑︁
𝑖=1

𝑇∑︁
𝑡=1

(
𝜋 teacher𝑡 (· | 𝑓𝑖 ) − 𝜋student𝑡 (·)

)
(3)

with KL regularization toward a reference policy 𝜋ref for stability:
∇𝜃L = ∇𝜃LSDPO + 𝜆(𝜋𝜃 − 𝜋ref).

2.4 Baseline Methods
REINFORCE.. Sequence-level policy gradientwith variance-reducing

baseline:

∇𝜃LRF = − 1
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖 − 𝑅)
𝑇∑︁
𝑡=1

(e𝑠𝑖,𝑡 − 𝜋𝑡 ) (4)

where 𝑅 is the batch mean reward and e𝑠𝑖,𝑡 is the one-hot encoding
of the sampled token.

Advantage-Weighted. Distributes the sequence reward to tokens
proportionally to local quality estimates, modeling approaches like
SCAR [13]:

𝐴𝑖,𝑡 = (𝑅𝑖 − 𝑅) ·
𝑞(𝑡, 𝑠𝑖,𝑡 ) − 𝑞𝑡∑

𝑡 ′ |𝑞(𝑡 ′, 𝑠𝑖,𝑡 ′ ) − 𝑞𝑡 ′ | + 𝜖
(5)

2.5 Hybrid Adaptive Method
We propose a hybrid method that interpolates between SDPO
(dense) and REINFORCE (sparse) credit assignment based on feed-
back informativeness, measured by the teacher–student KL diver-
gence:

∇𝜃Lhybrid = 𝛼 · ∇𝜃LSDPO + (1 − 𝛼) · ∇𝜃LRF (6)

where 𝛼 = 𝜎

(
𝐷̄KL (𝜋 teacher ∥𝜋 student )−𝜏

𝜏/3

)
and 𝜏 is a threshold hyperpa-

rameter. When feedback is informative (large KL), 𝛼 → 1 and SDPO
dominates; when feedback is uninformative (small KL), 𝛼 → 0 and
REINFORCE provides a stable fallback.

2.6 Evaluation Metrics
Alignment (Reward). Mean reward of sampled sequences, aver-

aged over the final 20 training steps.
2
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Table 1: Final mean reward (last 20 steps) across methods
and feedback types. Bold indicates best per column. SDPO
consistently outperforms both baselines.

Method Binary Ordinal Continuous Critique

SDPO 0.650 0.654 0.641 0.637
REINFORCE 0.512 0.508 0.514 0.510
Adv-Weighted 0.520 0.516 0.511 0.516

Credit Assignment Correlation. Pearson correlation between the
negative gradient direction and ground-truth per-token advantages
𝐴∗ (𝑡, 𝑣) = 𝑞(𝑡, 𝑣) −E𝑣′∼𝜋𝑡 [𝑞(𝑡, 𝑣 ′)], averaged across positions. This
measures how well the training signal identifies which tokens are
genuinely better.

Diversity (Entropy). Average Shannon entropy of the policy across
positions: 𝐻 (𝜋) = − 1

𝑇

∑
𝑡

∑
𝑣 𝜋𝑡 (𝑣) log𝜋𝑡 (𝑣), with maximum en-

tropy log𝑉 for a uniform distribution.

2.7 Experimental Design
All experiments use vocabulary size𝑉=8, sequence length𝑇=6, 300
training steps with 32 rollouts per step, learning rate 0.02, and KL
regularization weight 𝜆=0.01. We conduct four experiment sets:
(1) Method × feedback type comparison (3 methods × 4 feedback
types); (2) Noise robustness sweep (6 noise levels × 3 methods);
(3) Hybrid method evaluation under noisy feedback (𝜎=0.2); (4)
Multi-seed validation (5 seeds × 3 methods).

3 RESULTS
3.1 SDPO Dominates Across All Feedback Types
Table 1 presents the primary comparison across methods and feed-
back types. SDPO achieves the highest final mean reward under
every feedback condition tested, outperforming REINFORCE by
+0.123 to +0.146 and advantage-weighted by +0.121 to +0.137 in
mean reward. The advantage is consistent: SDPO’s worst-case per-
formance (0.637, critique) exceeds the best-case performance of
both baselines across all feedback types.

Figure 1 shows the convergence dynamics. SDPO separates from
baselines within the first 30–50 training steps and maintains its ad-
vantage throughout training. Both REINFORCE and the advantage-
weighted method converge to similar reward levels (∼0.51), suggest-
ing that in this setting, the estimated token-level advantages in the
advantage-weighted method do not provide sufficient additional
signal beyond sequence-level rewards.

3.2 Credit Assignment Improves with Feedback
Richness

Table 2 and Figure 2 present credit assignment correlation—the
alignment between each method’s gradient direction and the true
per-token advantages.

SDPO exhibits strong positive correlation across all feedback
types, increasing monotonically from binary (0.703) to ordinal
(0.734) to continuous (0.768) to critique (0.785). This ordering di-
rectly reflects the information content of each feedback type: binary

Figure 1: Reward convergence curves (smoothed, window=15)
for three methods across four feedback types. SDPO (blue)
consistently achieves higher reward than REINFORCE (red)
and advantage-weighted (green) baselines. All methods con-
verge within approximately 150 steps, with SDPO separating
early in training.

Table 2: Credit assignment correlation between gradient di-
rection and ground-truth per-token advantages. Higher is
better. Only SDPO achieves meaningful positive correlation,
which increases with feedback informativeness.

Method Binary Ordinal Continuous Critique

SDPO 0.703 0.734 0.768 0.785
REINFORCE −0.645 −0.630 −0.636 −0.634
Adv-Weighted −0.052 −0.071 −0.094 −0.108

provides only a threshold signal, ordinal adds graded quality distinc-
tions, continuous provides the full scalar, and critique additionally
localizes quality to specific tokens.

REINFORCE shows strong negative correlation (∼ −0.63), in-
dicating that its uniform credit assignment systematically misat-
tributes reward. This occurs because REINFORCE pushes all tokens
equally in the direction of the sequence reward, whereas the true
advantages are heterogeneous across positions. The advantage-
weighted method achieves near-zero correlation (∼ −0.07 to −0.11),
marginally better than REINFORCE but still unable to accurately
identify per-token contributions.

3.3 The Diversity–Alignment Trade-off
Figure 3 and Table 3 reveal a significant diversity cost. SDPO’s
final policy entropy ranges from 1.616 (binary) to 1.780 (critique),
corresponding to 78–86% of the maximum entropy log 8 ≈ 2.079.
In contrast, both baselines maintain entropy near the maximum
(∼2.075), indicating near-uniform distributions.

3
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Figure 2: Credit assignment correlation across methods and
feedback types. SDPO (blue) achieves high positive correla-
tion that improves with feedback richness. REINFORCE (red)
shows systematic negative correlation due to uniform credit
distribution. Advantage-weighted (green) achieves near-zero
correlation. Values annotated above bars.

Table 3: Final policy entropy (max = ln 8 ≈ 2.079). SDPO re-
duces entropy by 14–22% vs. baselines, indicating reduced
output diversity.

Method Binary Ordinal Continuous Critique

SDPO 1.616 1.644 1.750 1.780
REINFORCE 2.075 2.076 2.075 2.076
Adv-Weighted 2.076 2.071 2.076 2.075

Figure 3: Left: Policy entropy over training for continuous
feedback. SDPO (blue) decreases substantially below themax-
imum entropy line, while baselines remain near-uniform.
Right: Final entropy by feedback type. SDPO’s entropy re-
duction is most severe with binary feedback and least with
critique, reflecting the teacher distribution’s sharpness.

The entropy reduction is most pronounced with binary feedback
(22% below maximum) and least with critique feedback (14% be-
low). This is mechanistically coherent: binary feedback creates a
sharper teacher distribution (all-or-nothing shift) that aggressively
narrows the student, while critique’s per-token hints produce a
more nuanced teacher that preserves some distributional breadth.

This diversity loss is the primary concern for deploying SDPO in
open-ended settings where multiple valid outputs exist. Increasing
KL regularization weight 𝜆 could mitigate this, but at the cost of
reduced alignment—a fundamental trade-off.

Figure 4: Left: Final mean reward vs. feedback noise. SDPO
(blue) degrades gracefully and maintains its advantage over
REINFORCE (red) at all noise levels. Right: Credit assignment
correlation vs. noise. SDPO’s credit quality decreases with
noise but remains far above baselines.

3.4 Noise Robustness
Figure 4 presents the noise sweep results. SDPO’s reward degrades
gracefully from 0.641 (no noise) to 0.624 (𝜎=0.5), a loss of only 2.6%.
Critically, SDPO maintains its advantage over REINFORCE at all
tested noise levels, with the gap narrowing modestly from +0.131
(no noise) to +0.110 (𝜎=0.5). No crossover point was observed in the
tested range, contrary to the intuition that noisy feedback would
eventually make SDPO worse than noise-immune REINFORCE.

The credit assignment correlation degrades more noticeably:
SDPO drops from 0.768 to approximately 0.72 at 𝜎=0.5. However,
even degraded SDPO credit assignment remains far superior to
REINFORCE (∼ −0.63) and advantage-weighted (∼ −0.09) baselines,
which are unaffected by feedback noise since they use only the
scalar reward.

3.5 Hybrid Adaptive Method
Figure 5 shows the hybrid method’s behavior under noisy feedback
(𝜎=0.2). The hybrid method’s interpolation weight 𝛼 evolves adap-
tively during training: starting near 0.5, it shifts toward the SDPO
regime (𝛼 > 0.8) as training progresses and the teacher–student
divergence grows.

Under continuous feedback with noise, the hybrid achieves re-
ward 0.623 compared to SDPO’s 0.638 and REINFORCE’s 0.509.
Under critique feedback, the hybrid (0.631) slightly outperforms
SDPO (0.627), suggesting that the adaptive mechanism provides
value when per-token feedback quality varies. The hybrid consis-
tently achieves intermediate entropy (1.82–1.83), providing a better
diversity–alignment balance than pure SDPO.

3.6 Statistical Reliability
Figure 6 shows multi-seed validation across 5 random seeds. SDPO
achieves mean reward 0.669 ± 0.058 compared to REINFORCE’s
0.486 ± 0.034 and advantage-weighted’s 0.488 ± 0.040. The SDPO
advantage (+0.183mean) is statistically robust, exceeding 3 standard
deviations of the baseline distribution. SDPO’s higher variance
(±0.058 vs. ±0.034) reflects its sensitivity to the random reward
structure—when the reward landscape is more amenable to dense
credit assignment, SDPO benefits disproportionately.

4
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Figure 5: Hybrid method evaluation under noisy feedback
(𝜎=0.2). Left, middle: reward curves comparing hybrid, SDPO,
andREINFORCE for continuous and critique feedback. Right:
Hybrid alpha trajectory showing adaptive transition from
balanced to SDPO-dominated credit assignment during train-
ing.

Figure 6: Multi-seed final reward (continuous feedback, 𝑛=5
seeds). Error bars show standard deviation. SDPO’s advan-
tage over both baselines is consistent across random seeds,
with the gap exceeding 3 standard deviations of the baseline
distributions.

4 CONCLUSION
This simulation study provides the first systematic evidence that
SDPO’s retrospection-based credit assignment mechanism gener-
alizes beyond verifiable domains to open-ended and continuous-
reward settings. Our key findings are:

SDPO works in continuous-reward settings. Across all four
feedback types—including the challenging binary and ordinal regimes—
SDPO consistently outperforms sequence-level (REINFORCE) and
estimated token-level (advantage-weighted) baselines by substan-
tial margins (+0.12 to +0.18 reward). The credit assignment quality
improves monotonically with feedback informativeness (binary <

ordinal < continuous < critique), confirming that the self-teacher
effectively leverages graded feedback structure.

Diversity preservation is the primary challenge. SDPO re-
duces policy entropy by 14–22%, a substantial diversity cost for
open-ended tasks. The magnitude depends on feedback type: binary
feedback creates sharper teacher distributions and more aggres-
sive narrowing, while critique feedback preserves more diversity
through its per-token structure. For tasks requiring diverse outputs
(creative writing, brainstorming), this trade-off must be explicitly
managed through regularization or ensemble approaches.

SDPO is unexpectedly noise-robust. Feedback noise up to
𝜎=0.5 reduces SDPO reward by only 2.6%, with no crossover where
REINFORCE surpasses SDPO. This robustness likely stems from
the averaging effect: noisy feedback shifts the teacher distribu-
tion stochastically, but across many rollouts, the average gradient
direction remains aligned with the true advantage.

Adaptive hybridization shows promise. The hybrid method’s
ability to automatically adjust between dense and sparse credit
assignment based on feedback informativeness offers a practical
pathway for deployment in settings with heterogeneous feedback
quality.

Limitations and Future Work. Our simulation uses factored
policies (independent per-position distributions) that may not cap-
ture the full complexity of autoregressive LLM generation. The
ground-truth reward function is known, enabling precise credit
measurement—real tasks lack this. Three key directions for future
work emerge: (1) validating these findings with full-scale LLM
training on open-ended benchmarks such as AlpacaEval and MT-
Bench; (2) investigating whether systematic (non-Gaussian) feed-
back bias, as might arise from LLM-as-judge evaluators, creates
different degradation patterns than the random noise tested here;
and (3) developing diversity-preserving variants of SDPO through
entropy-augmented objectives or mixture-of-teacher approaches.
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