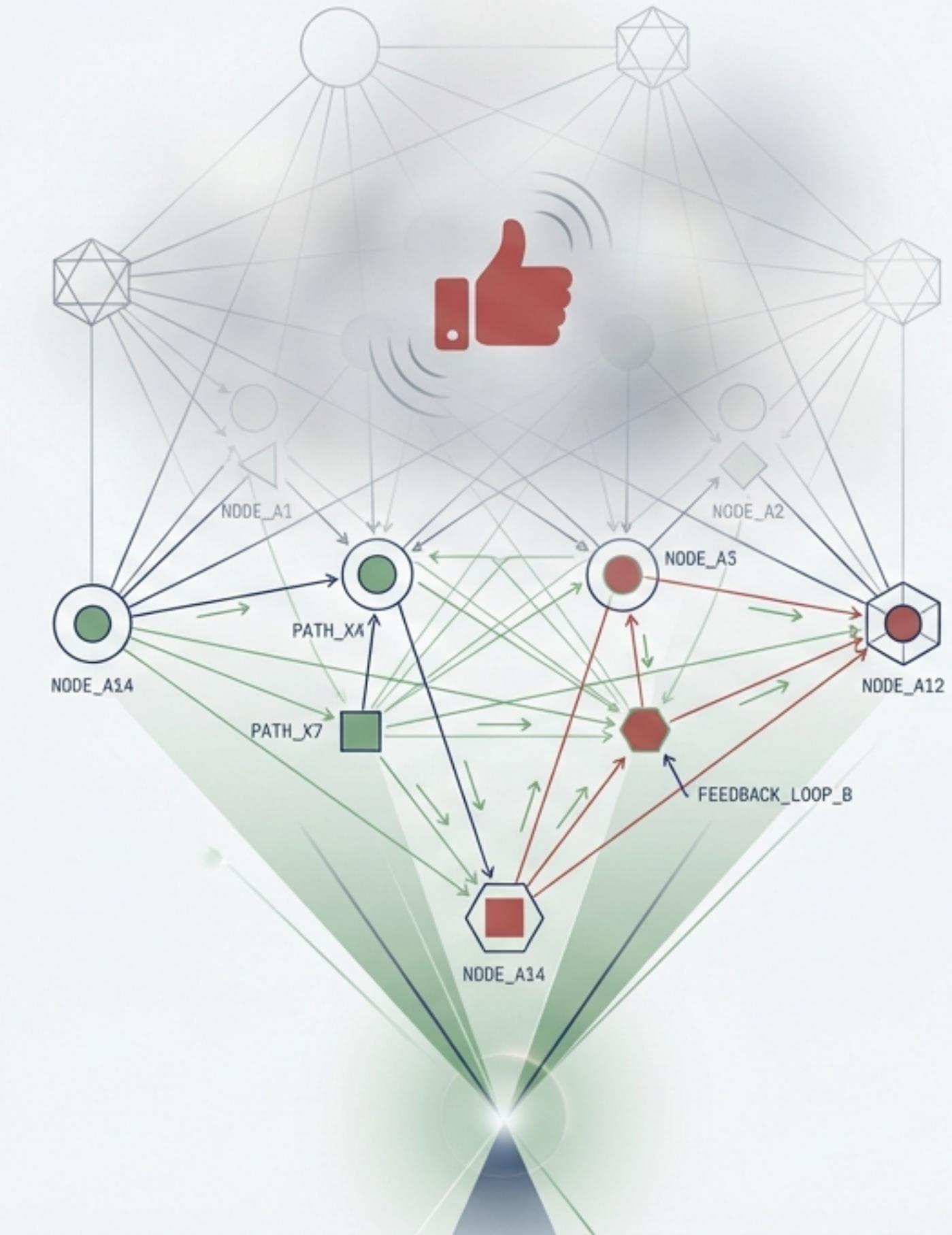


Deep Alignment in Open-Ended Domains

Investigating Self-Distillation Policy
Optimization (SDPO) through
Controlled Simulation



Based on "Self-Distillation Policy Optimization for Alignment in Open-Ended
and Continuous-Reward Settings: A Simulation Study"

SDPO unlocks dense feedback for creative tasks, but trades diversity for alignment

The Breakthrough

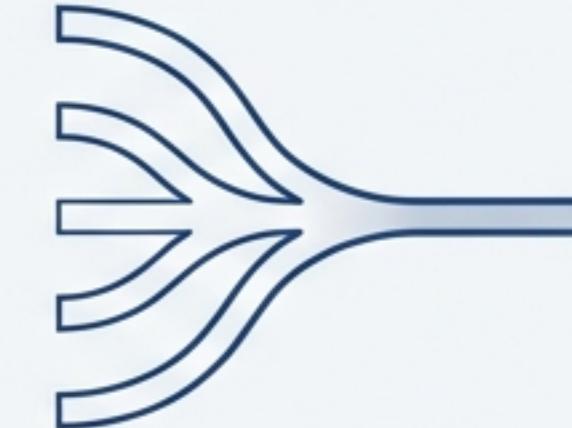
SDPO generalizes “retrospection” to open-ended text. It outperforms REINFORCE by **+0.13 to +0.18** mean reward, even without ground-truth verification.

The Mechanism

Superior Credit Assignment

Unlike baselines, SDPO achieves **>0.70 correlation** with **ground truth**, correctly identifying exactly which tokens drive quality.

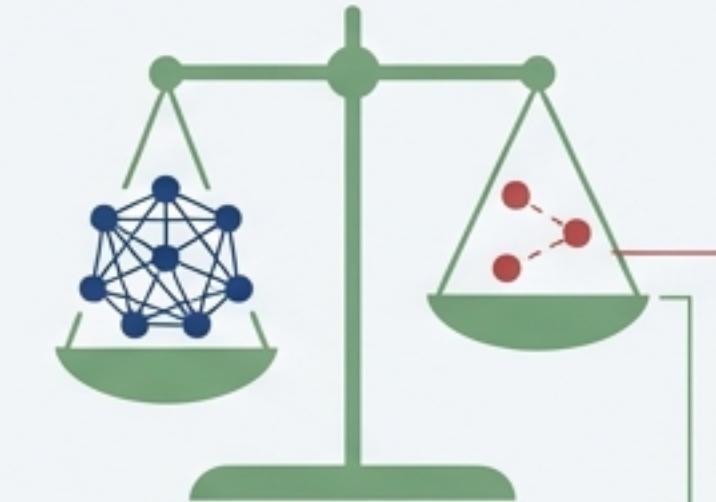
The Trade-off



Reduced Diversity

Stronger alignment reduces policy **policy entropy** by **15–22%**, creating a risk of **mode collapse** in creative generation.

The Fix

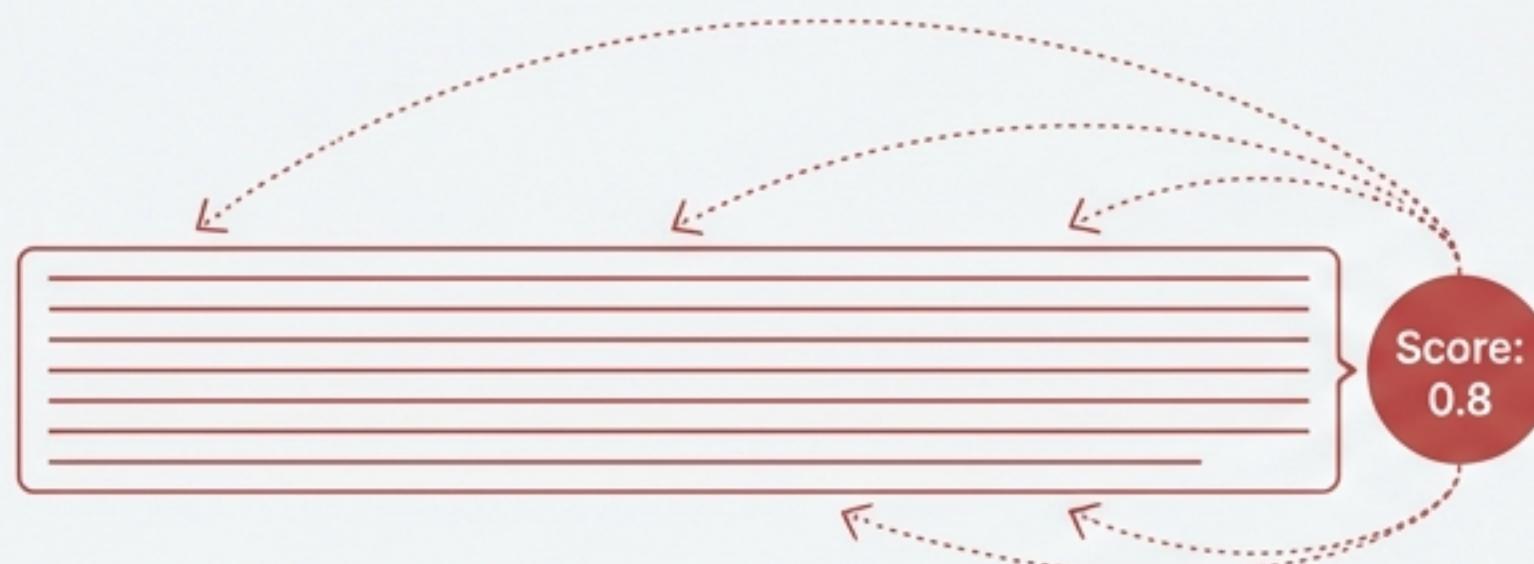


Hybrid Adaptation

A proposed **Hybrid Method** dynamically balances **dense SDPO signals** and **sparse REINFORCE signals** to **recover robustness**.

Standard RLHF suffers from a ‘Credit Assignment Gap’ in open-ended generation

Status Quo: Sparse Signal (PPO/DPO)



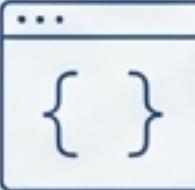
The model must guess which of the 100+ tokens caused the high score. Noise is added to the learning process.

Current methods implicitly distribute sequence-level rewards across all tokens, effectively diluting the signal.

The Ideal: Dense Credit Assignment

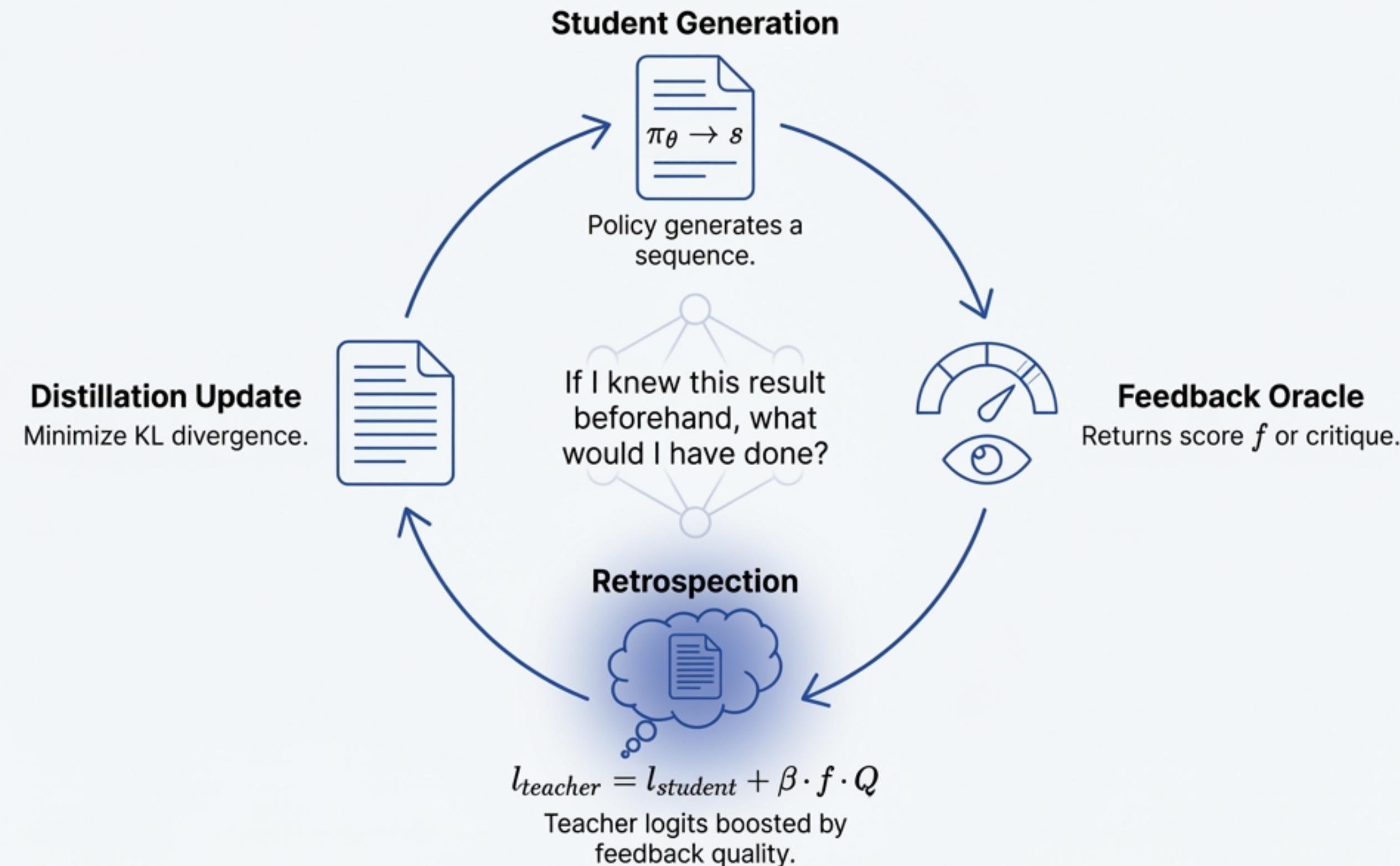
Precise feedback identifies exactly which adjective or phrase improved the output.

Moving beyond the safety net of verifiable ground truth.

Verifiable Domains (Existing SDPO Success)		Open-Ended Domains (This Study)
Code Generation, Math Solving		
Feedback	Compiler errors, Unit tests (Deterministic)	Feedback Subjective quality, Coherence, Style (No Compiler)
Signal Nature	Binary (Pass/Fail) & Exact error locations	Signal Nature Continuous, Noisy, Multi-dimensional

The Research Question: Can SDPO's 'retrospection' mechanism function when there is no compiler to prove the teacher right?

SDPO creates a "Self-Teacher" by conditioning the policy on feedback



A controlled simulation isolates the mechanism from training noise.

To measure credit assignment precisely, we use a token-level simulation rather than full LLM training.

Lab Specification

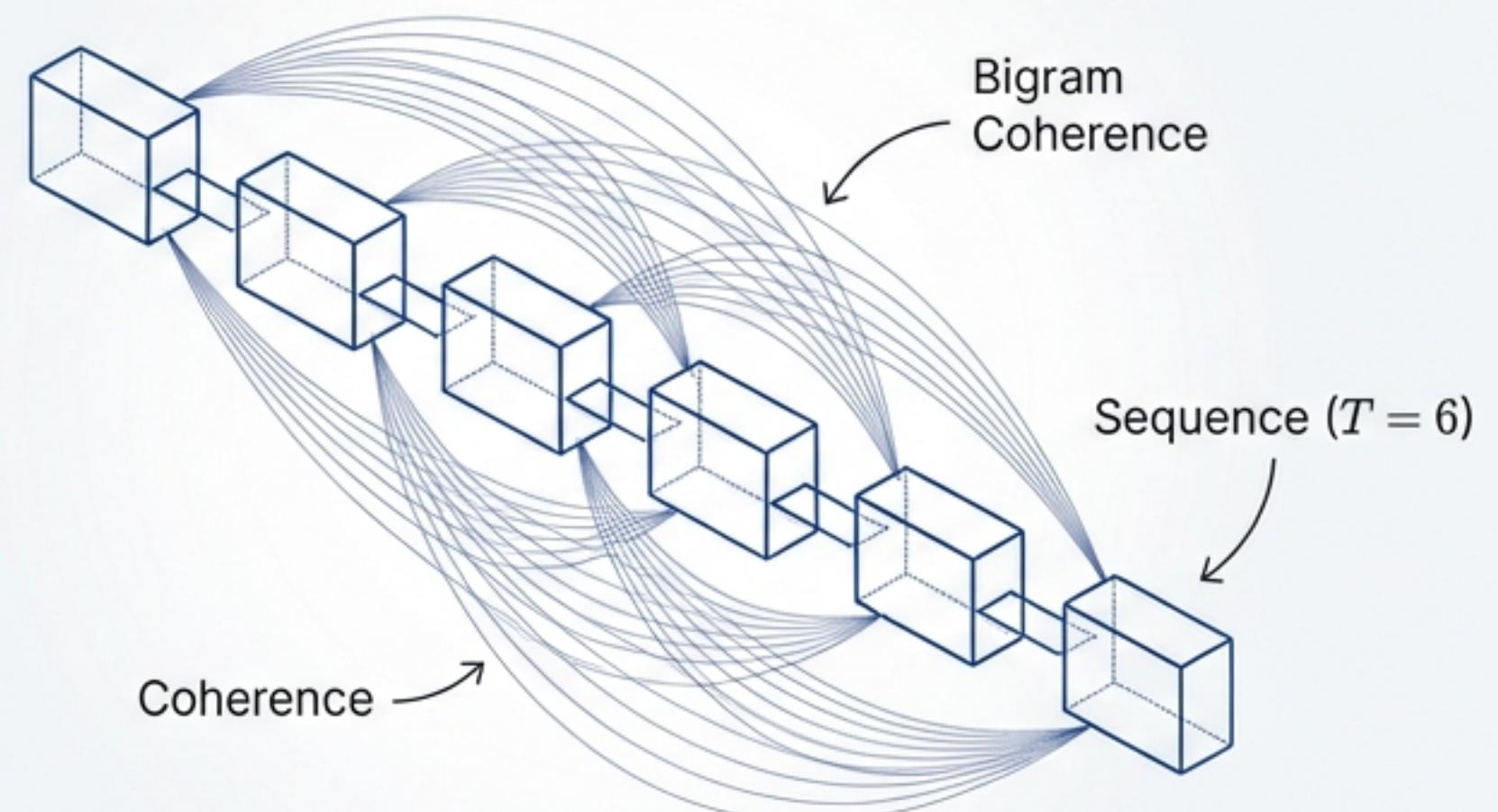
Simulation Parameters

Vocabulary Size: $V = 8$

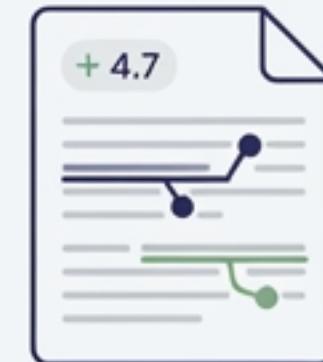
Sequence Length: $T = 6$

Reward Function: Continuous composition of Local Quality + Coherence (Bigram) + Global Patterns.

Key Advantage: **Known Ground Truth**. Allows exact measurement of gradient correctness.



We evaluate SDPO across the full spectrum of feedback informativeness.



Critique

Score + Per-token hints.
Most informative.

Continuous

Raw scalar reward.
Precision.

Ordinal

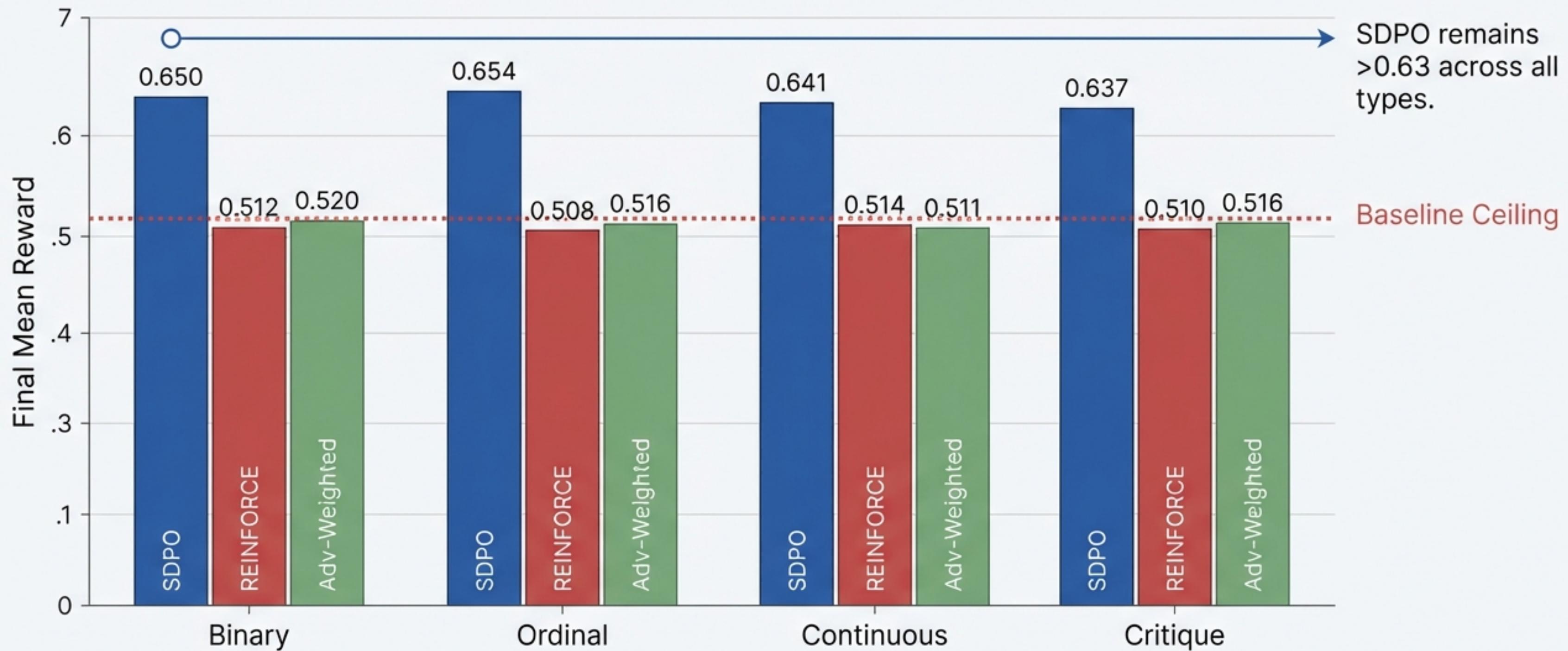
1-5 Star rating.
Quantized.

Binary

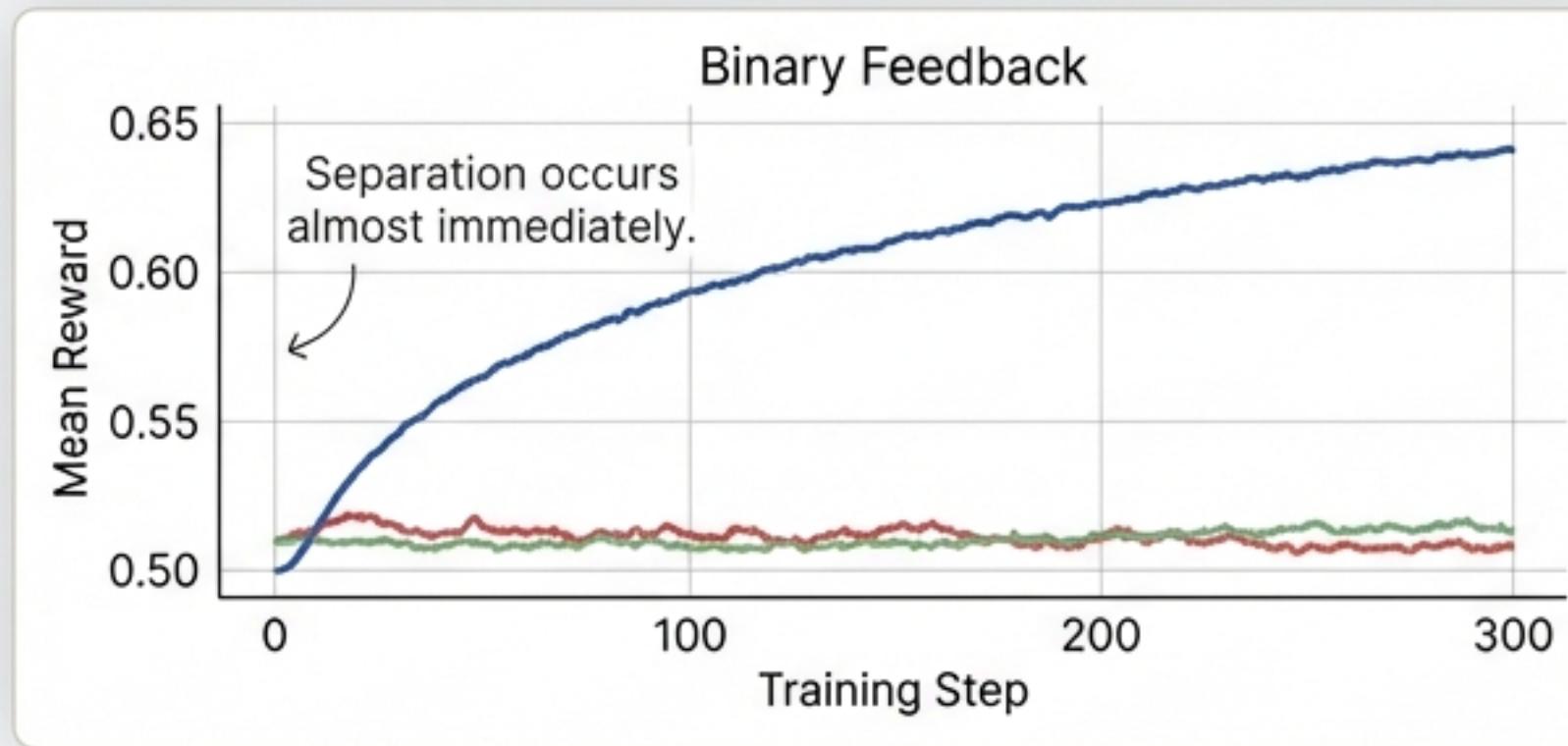
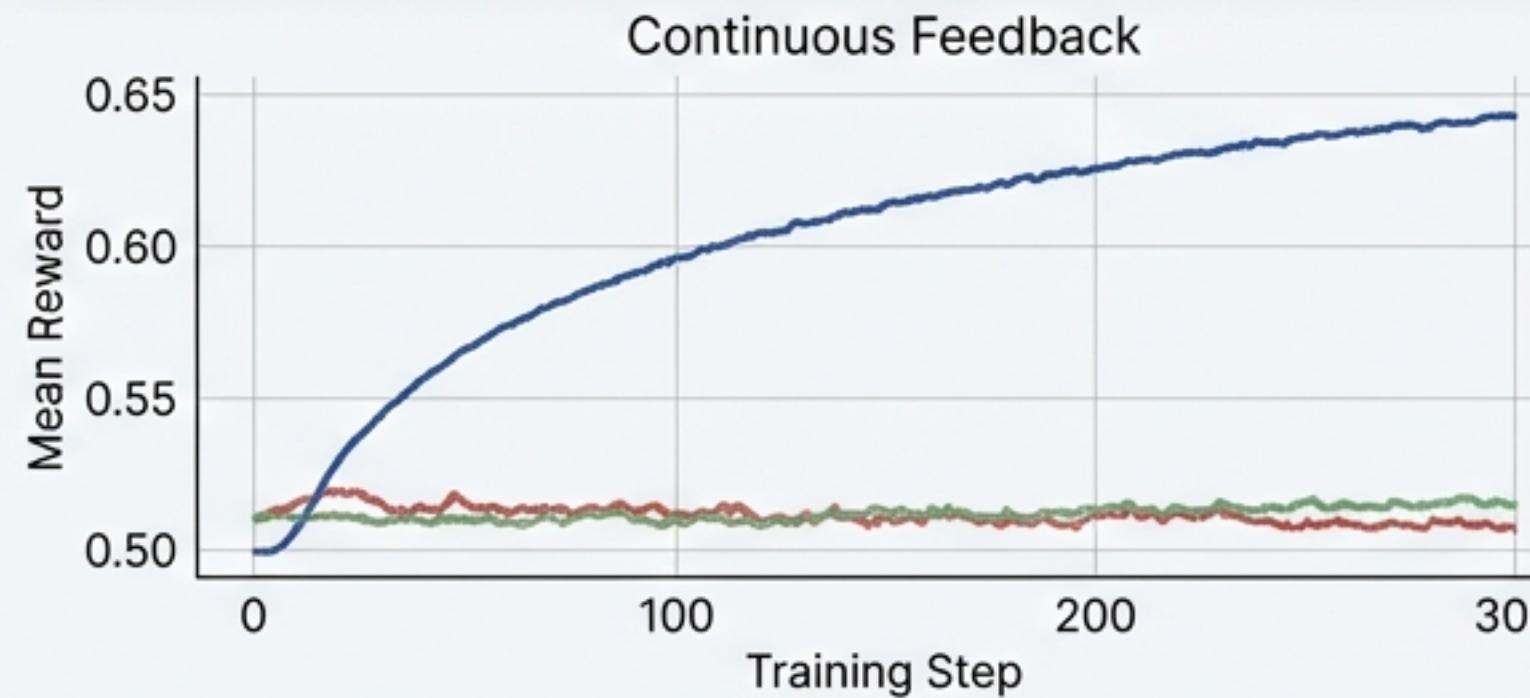
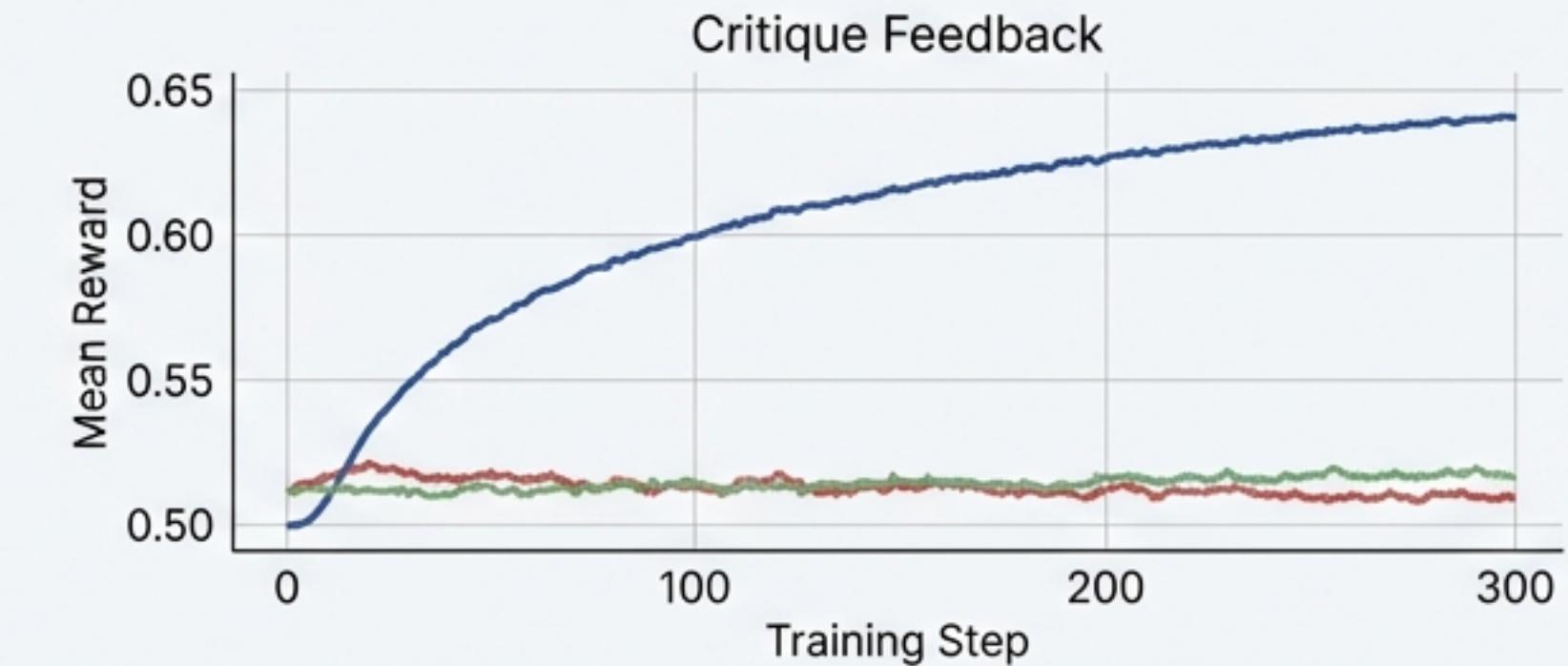
Pass/Fail threshold.
Least informative.

Tested with added Gaussian noise $\epsilon \sim N(0, \sigma^2)$ to simulate human inconsistency.

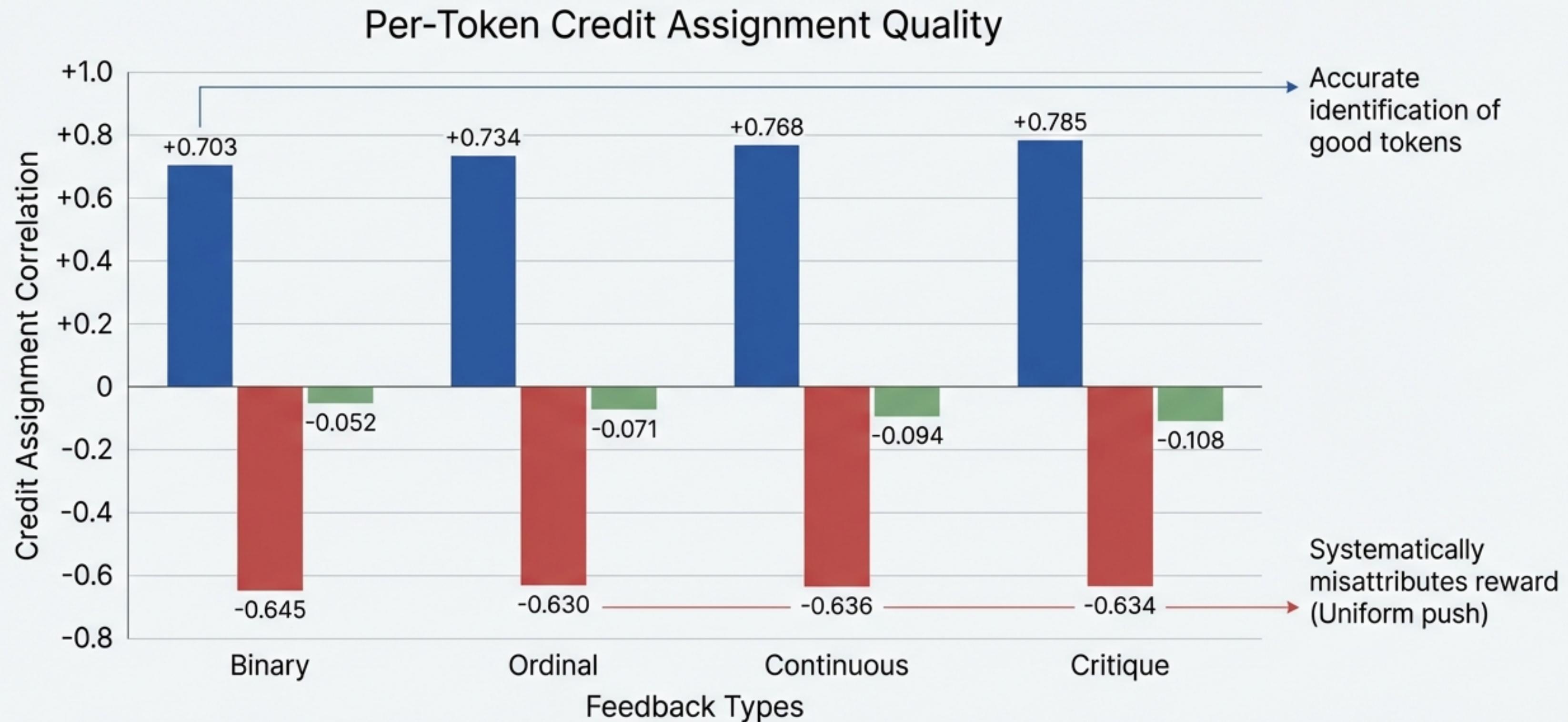
SDPO consistently outperforms baselines regardless of feedback type.



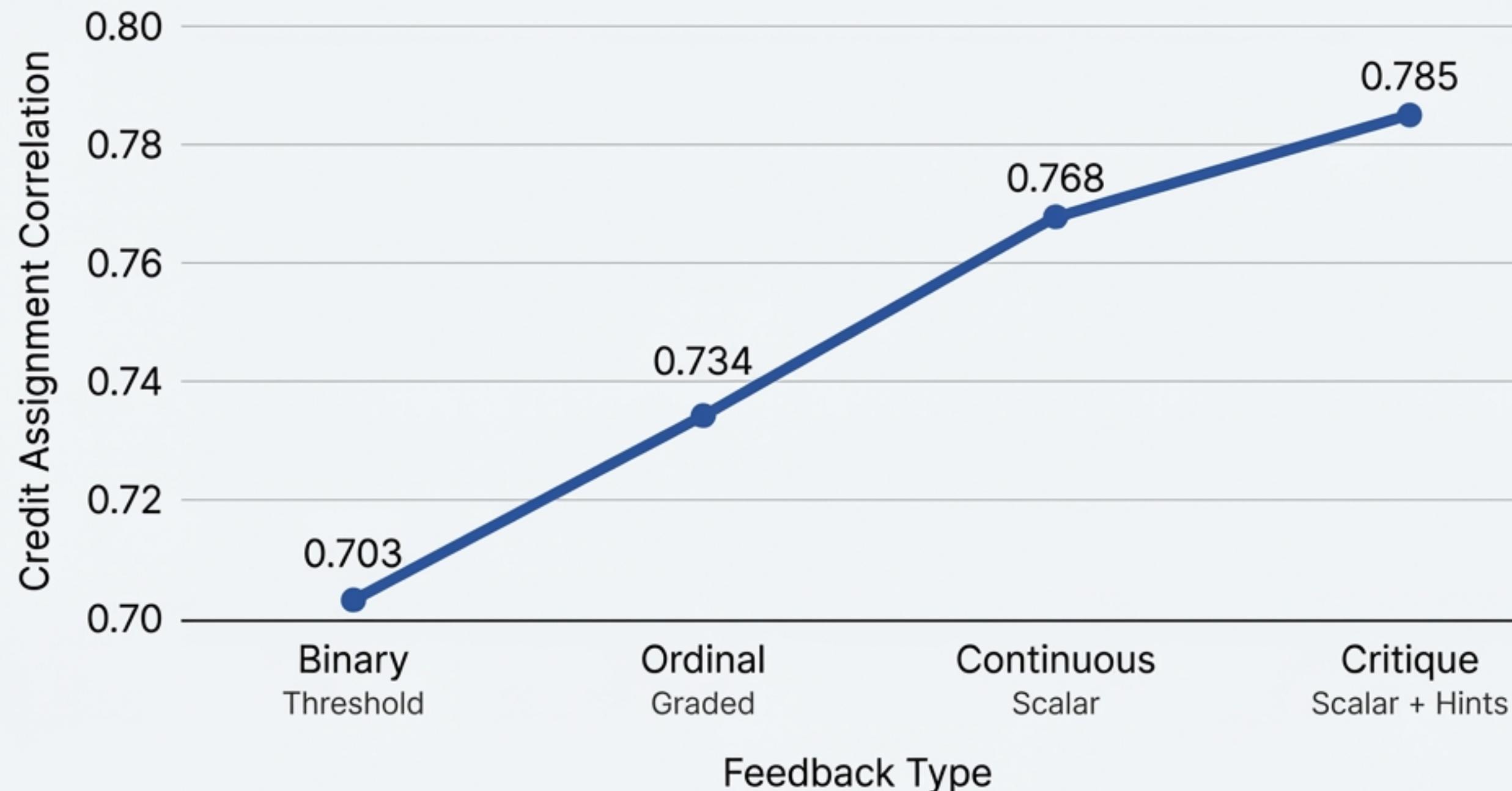
Convergence is rapid and separates from baselines within 30 steps.



SDPO correctly attributes credit; REINFORCE uniformly reinforces noise

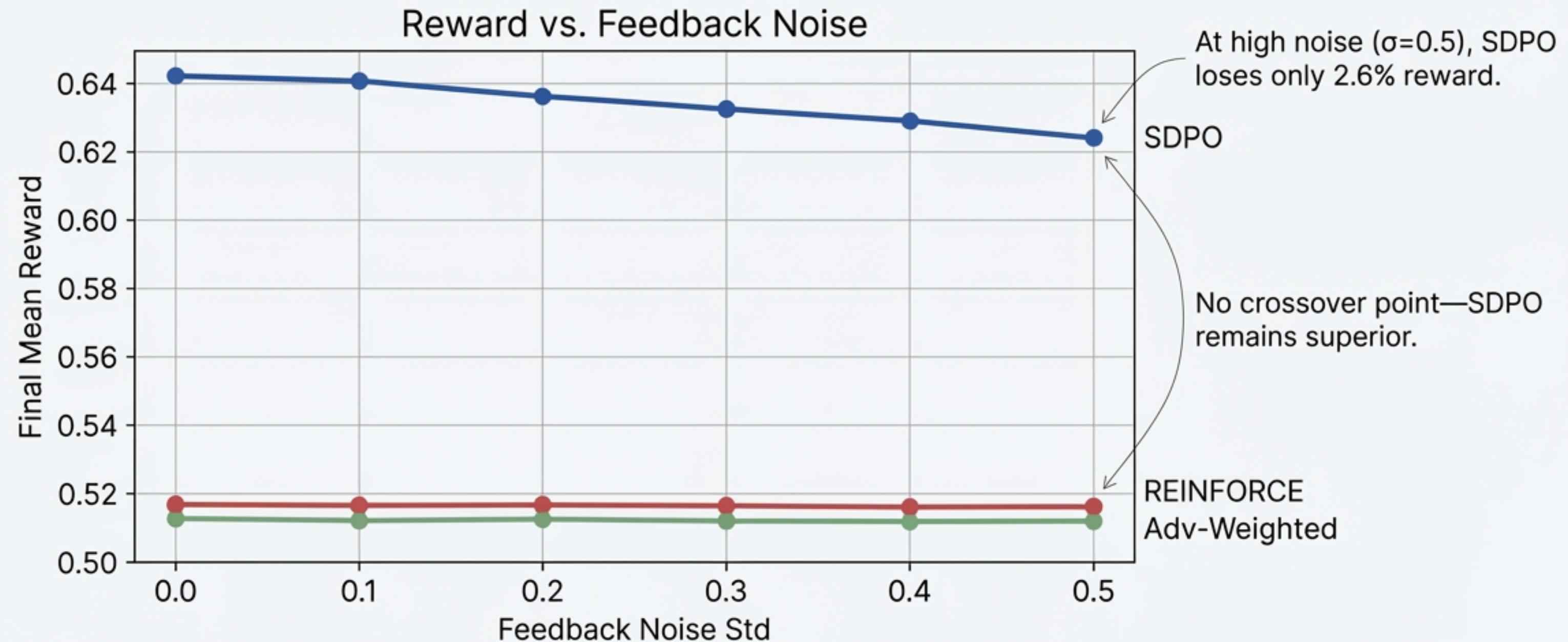


Alignment quality scales monotonically with feedback richness.

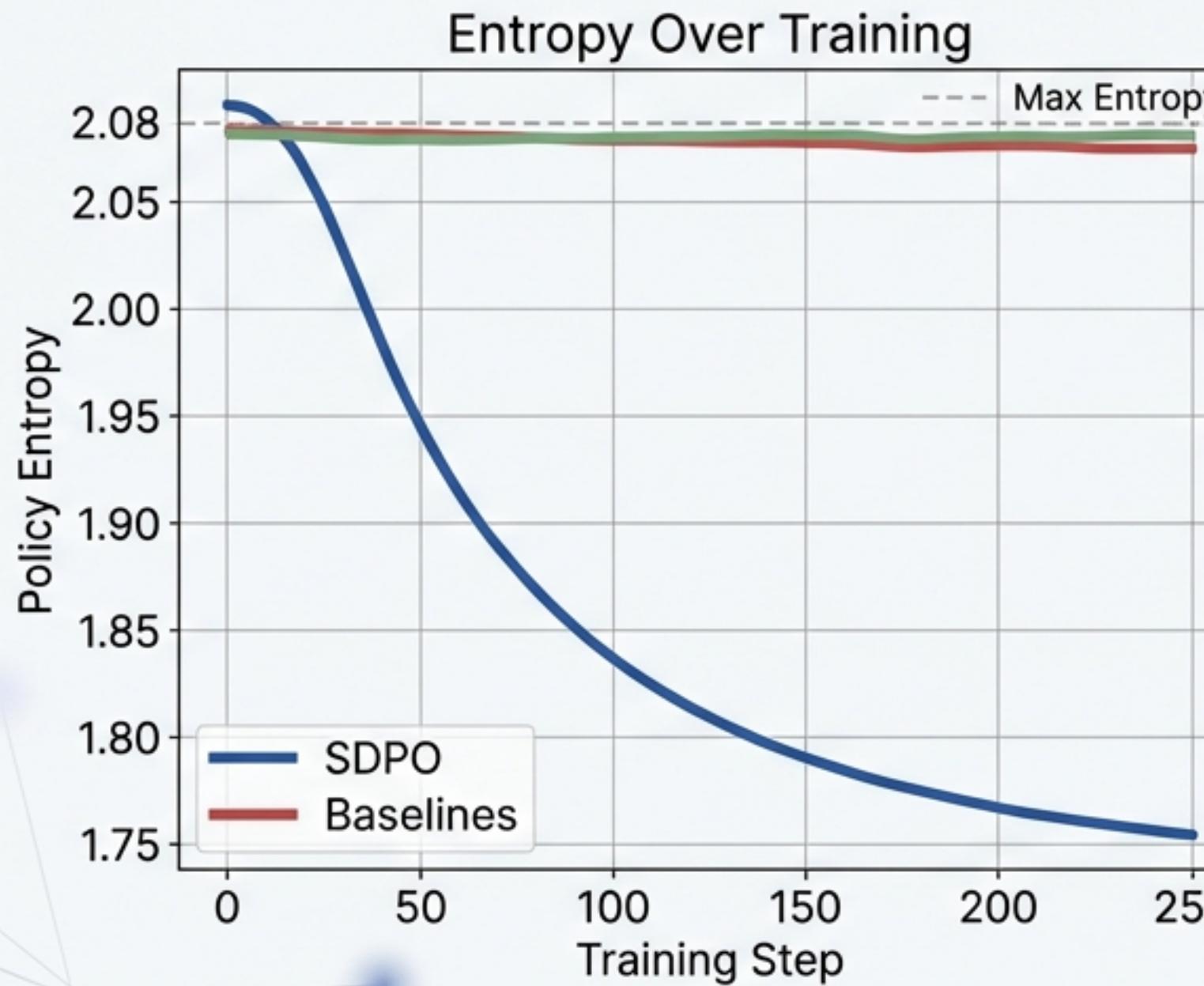
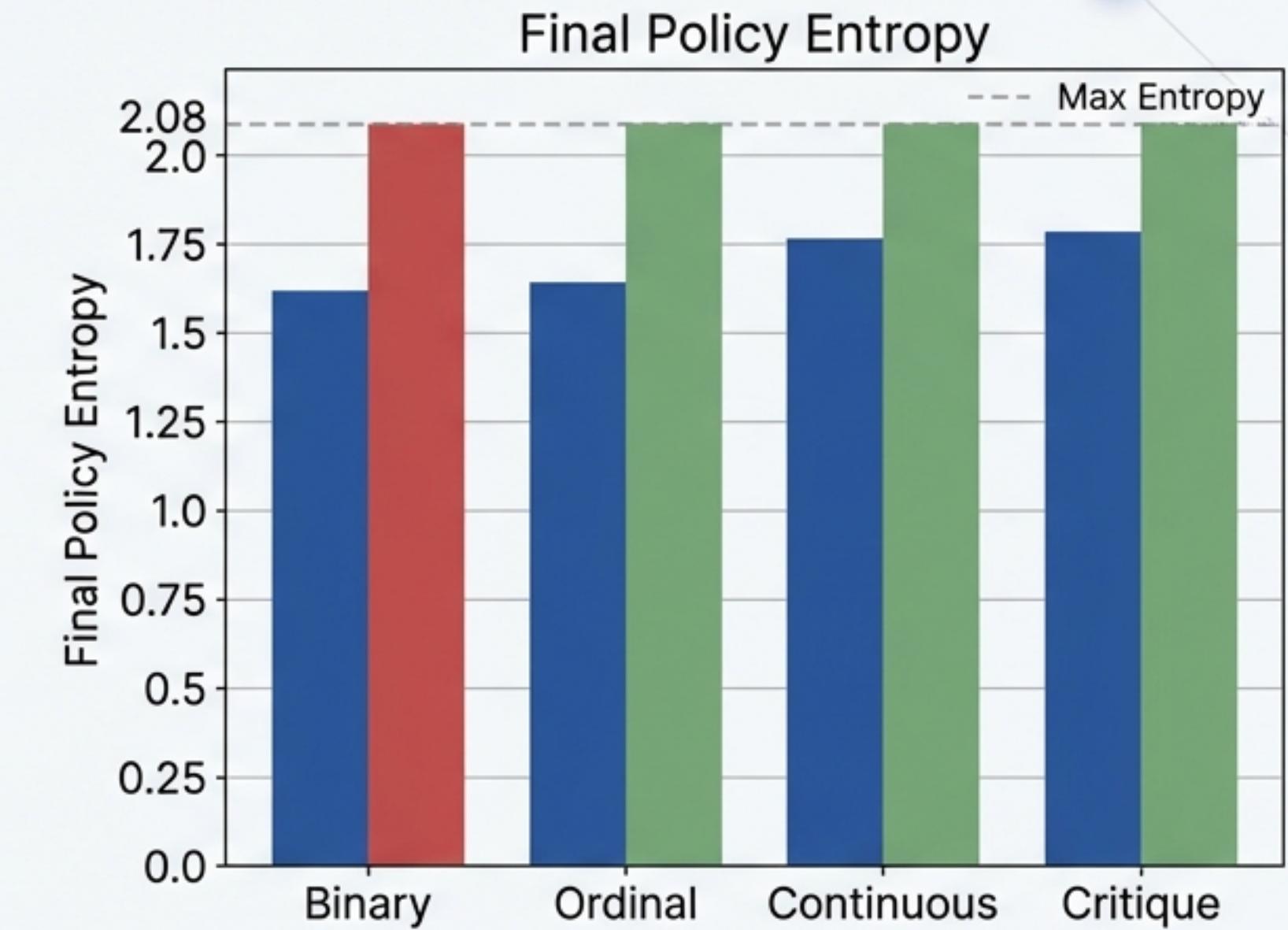


The self-teacher effectively leverages the nuanced hints in textual critique, confirming SDPO works without ground-truth verification.

SDPO exhibits graceful degradation even under high feedback noise.



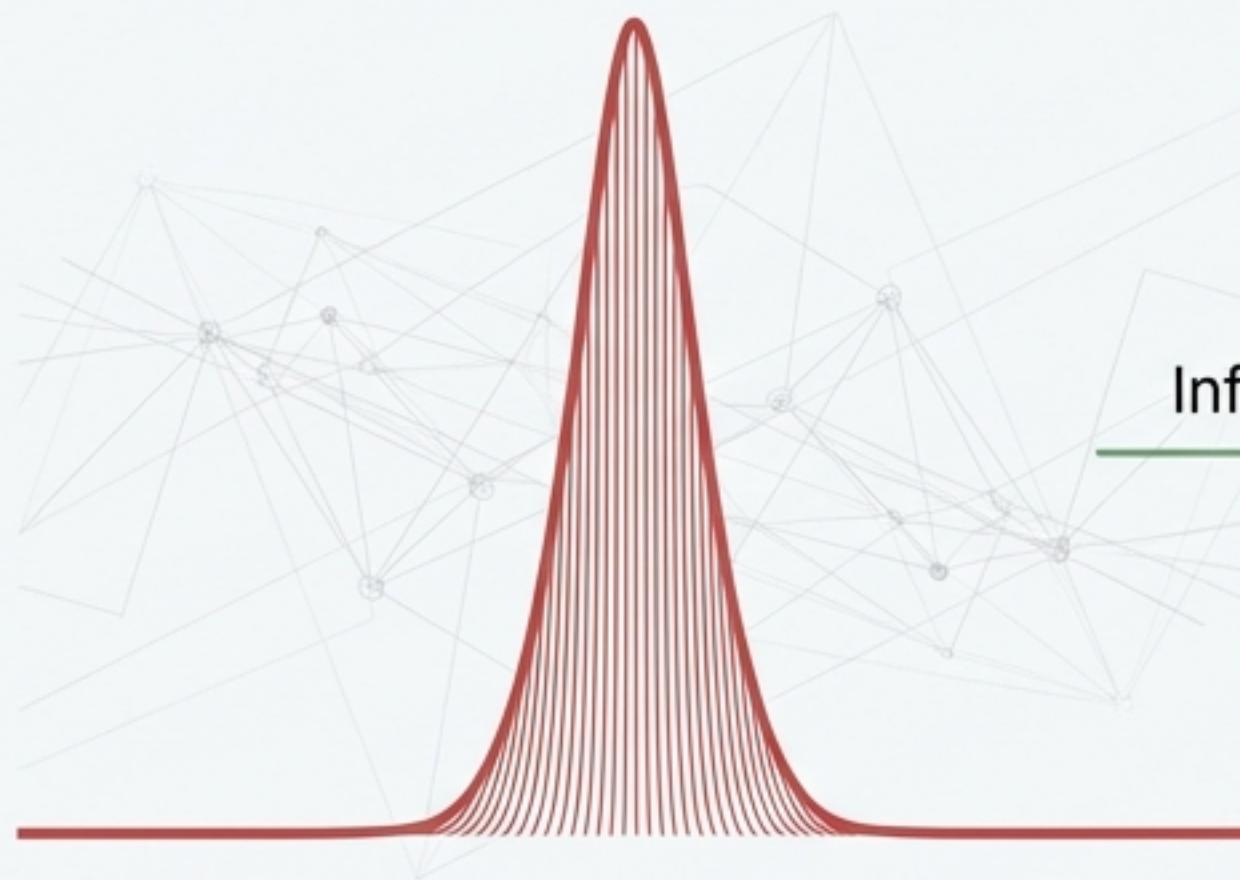
The hidden cost of alignment is a significant reduction in diversity.



SDPO reduces policy entropy by 15–22%, risking mode collapse

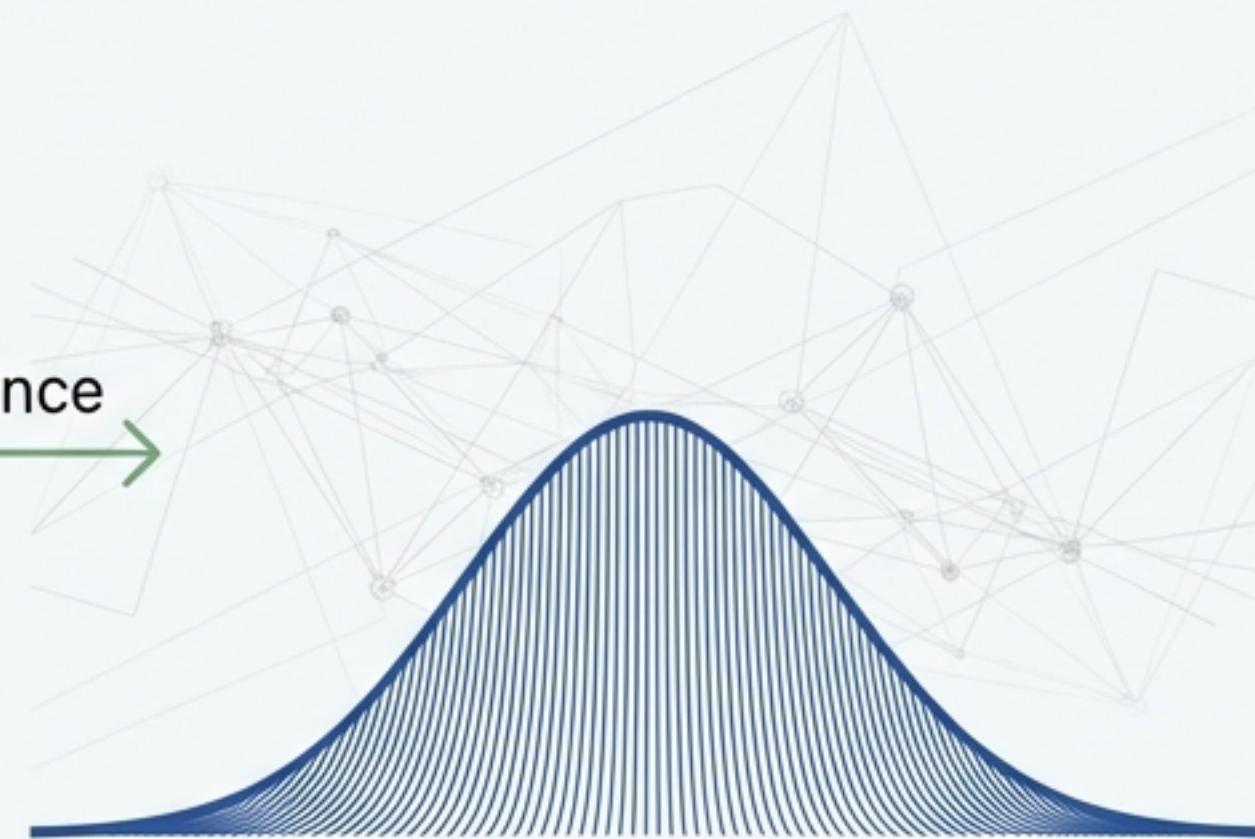
Sharp feedback creates narrow models; nuanced critique preserves breadth.

Binary Feedback Impact



High Entropy Loss (22%).
“All or nothing” signals force the teacher
to be overly confident.

Critique Feedback Impact



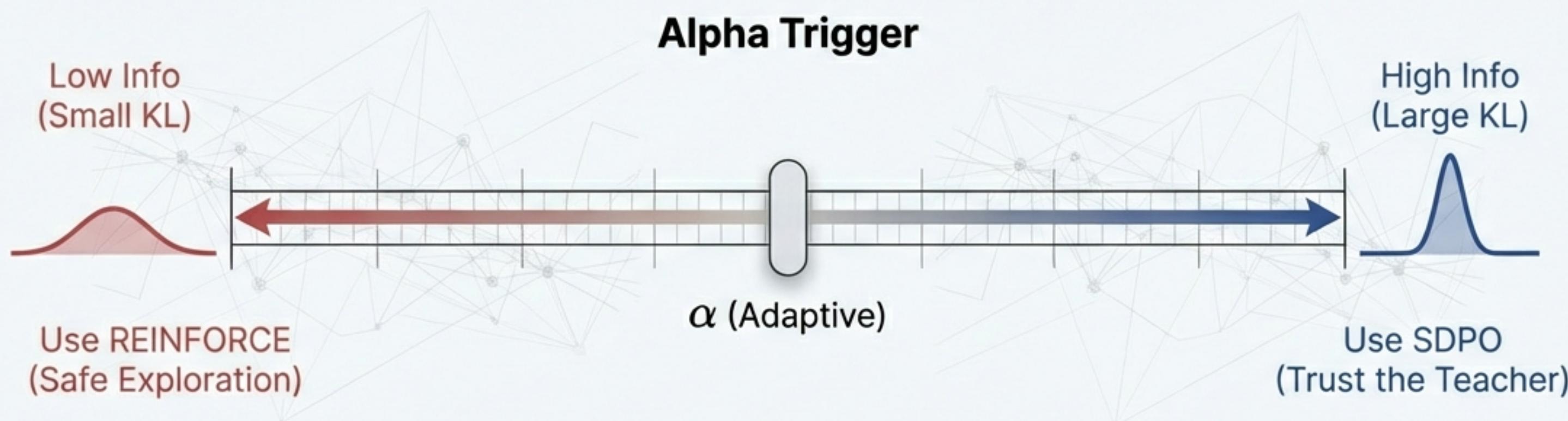
Lower Entropy Loss (14%).
Per-token hints create a smoother, more
complex teacher distribution.

Informational Nuance →

The Solution: Adaptive Hybridization based on Teacher-Student divergence.

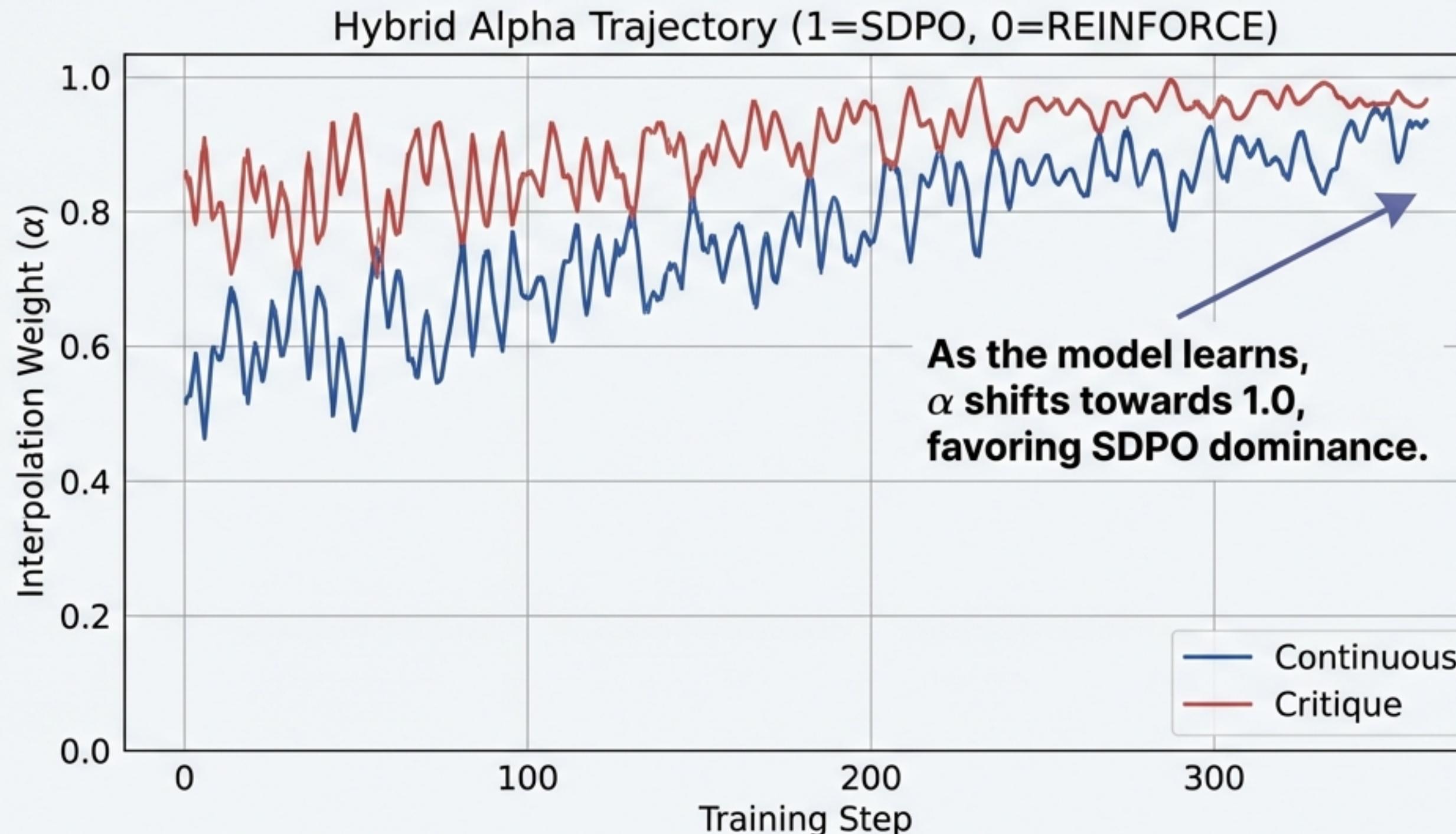
Hybrid Formula

$$\nabla L_{hybrid} = \alpha \cdot \nabla L_{SDPO} + (1 - \alpha) \cdot \nabla L_{RF}$$



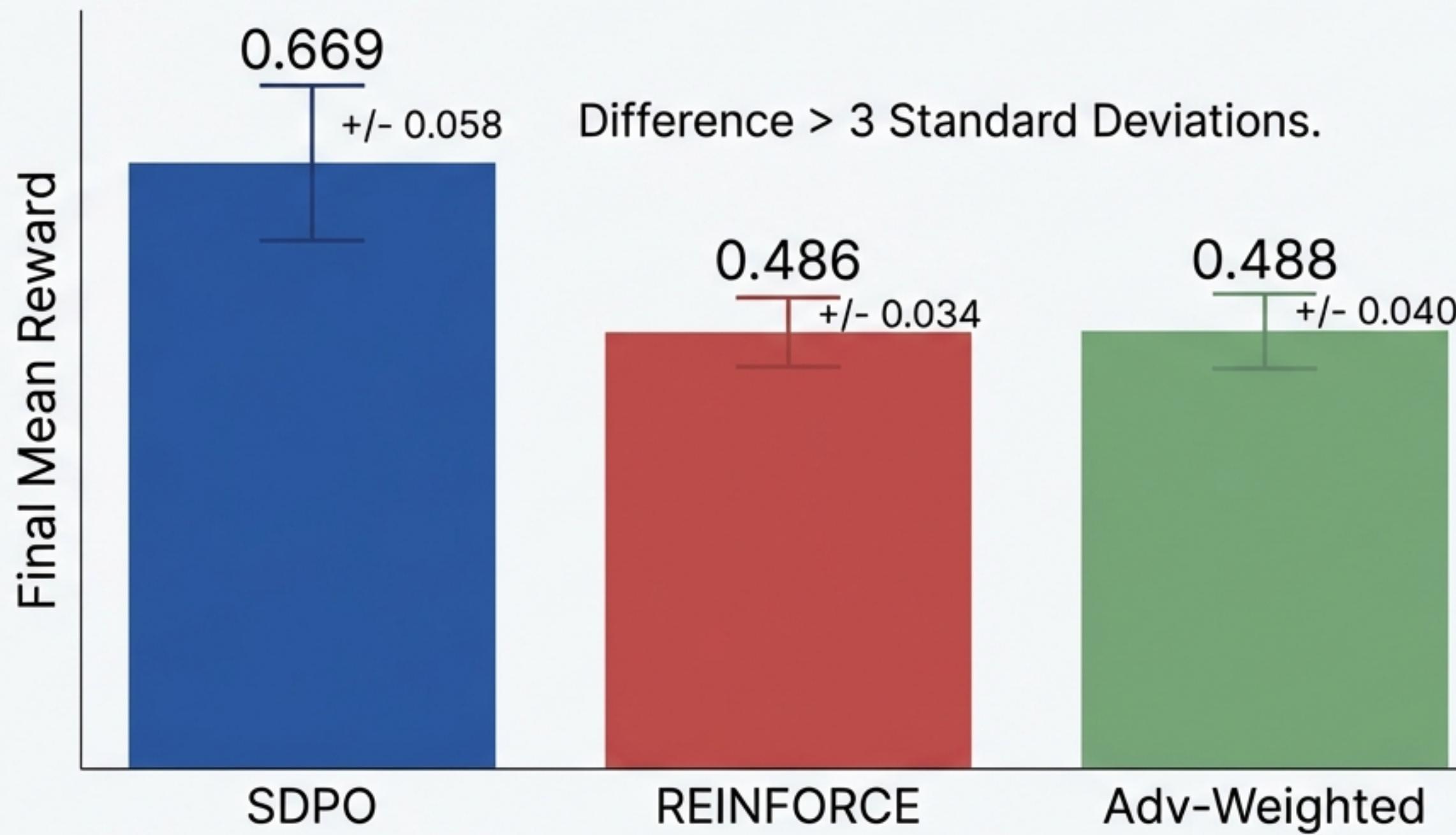
We mix Dense (SDPO) and Sparse (REINFORCE) signals dynamically during training.

The Hybrid method adapts autonomously, shifting from exploration to alignment.



Result: Hybrid matches SDPO performance but with better entropy (1.82 vs 1.75).

Results are statistically robust across multiple random seeds.



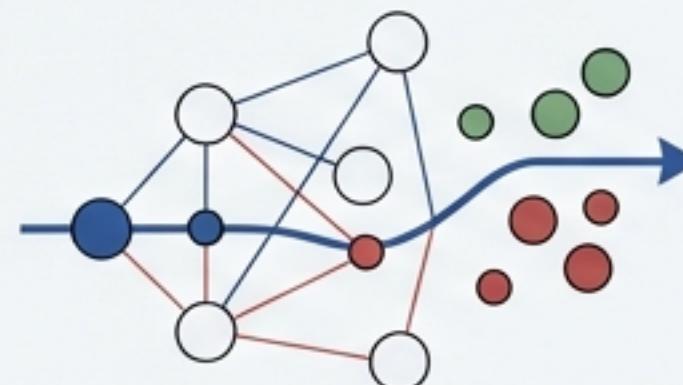
Higher variance in SDPO reflects its ability to exploit favorable reward landscapes.

Summary: Dense signals drive better alignment, even when the destination is open-ended.

1 Efficacy

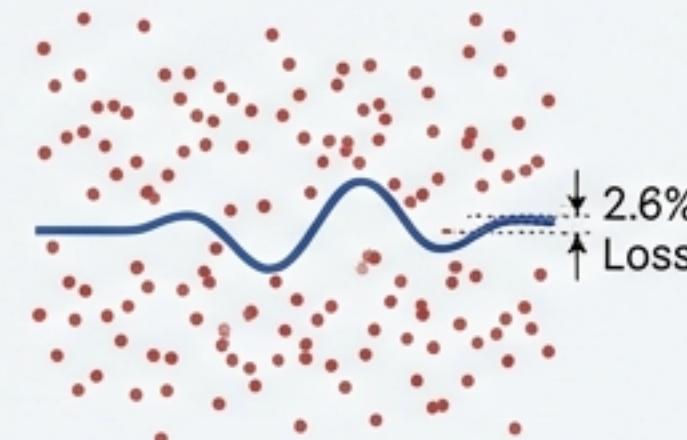
SDPO works continuous &

SDPO works for continuous & subjective rewards. It is not limited to code.



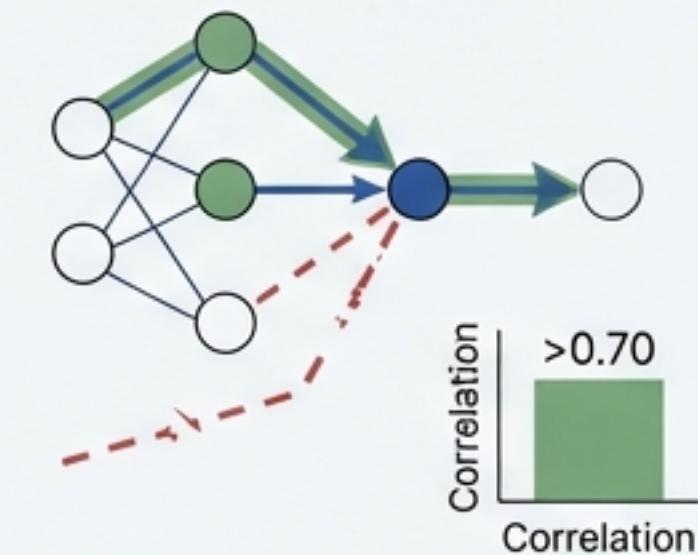
3 Robustness

Immune to
evaluator noise.
Only **2.6% loss** at
extreme noise levels



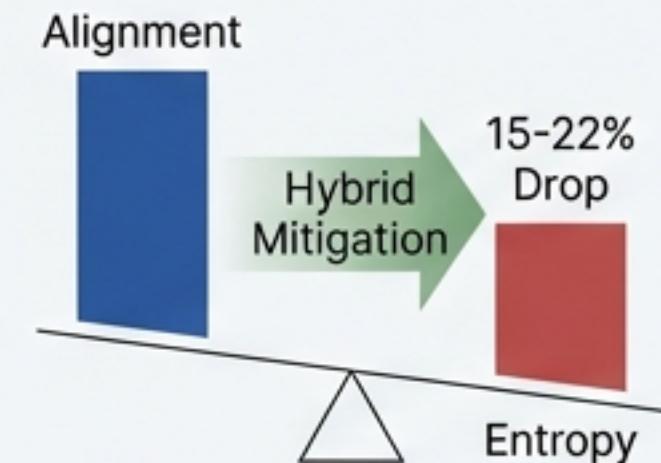
2 Mechanism Solves the Credit Assignment

Solves the Credit Assignment Bottleneck.
(>0.70 correlation with truth).



4 Constraints

Diversity Trade-off.
15-22% entropy drop requires Hybrid mitigation.



Implications for deployment in real-world LLMs

Actionable Advice

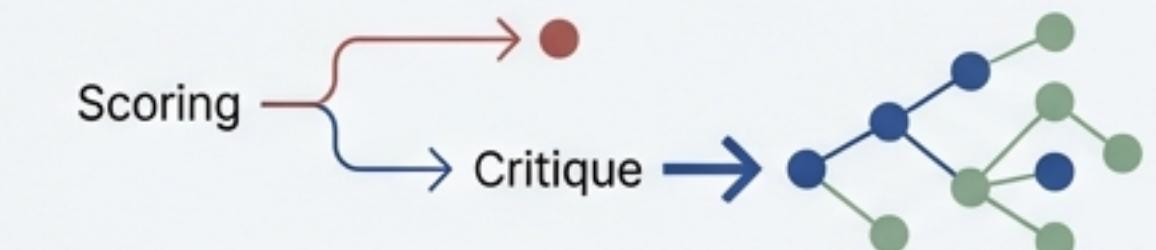
Target Subjective Tasks

Use SDPO for post-training alignment in summarization and dialogue where ground truth is absent.



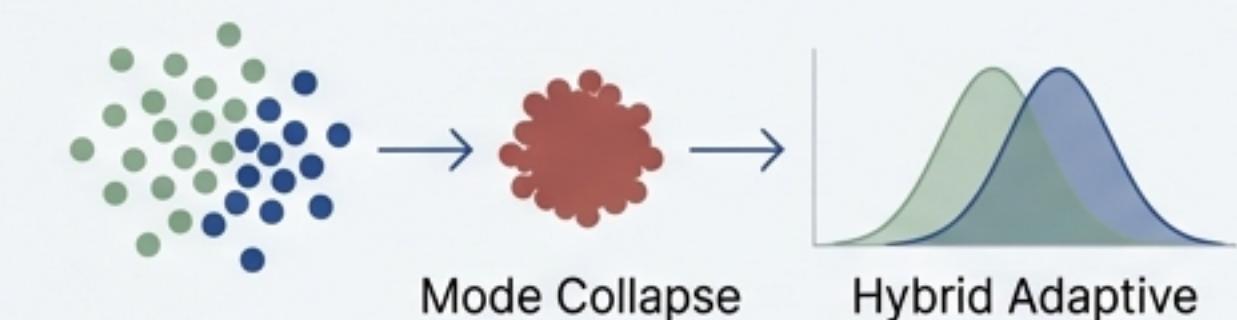
Prioritize Critique

Invest in 'Critique' style feedback over simple scoring to preserve model diversity.



Monitor Entropy

Watch for mode collapse. If repetitive, switch to the Hybrid Adaptive Method.

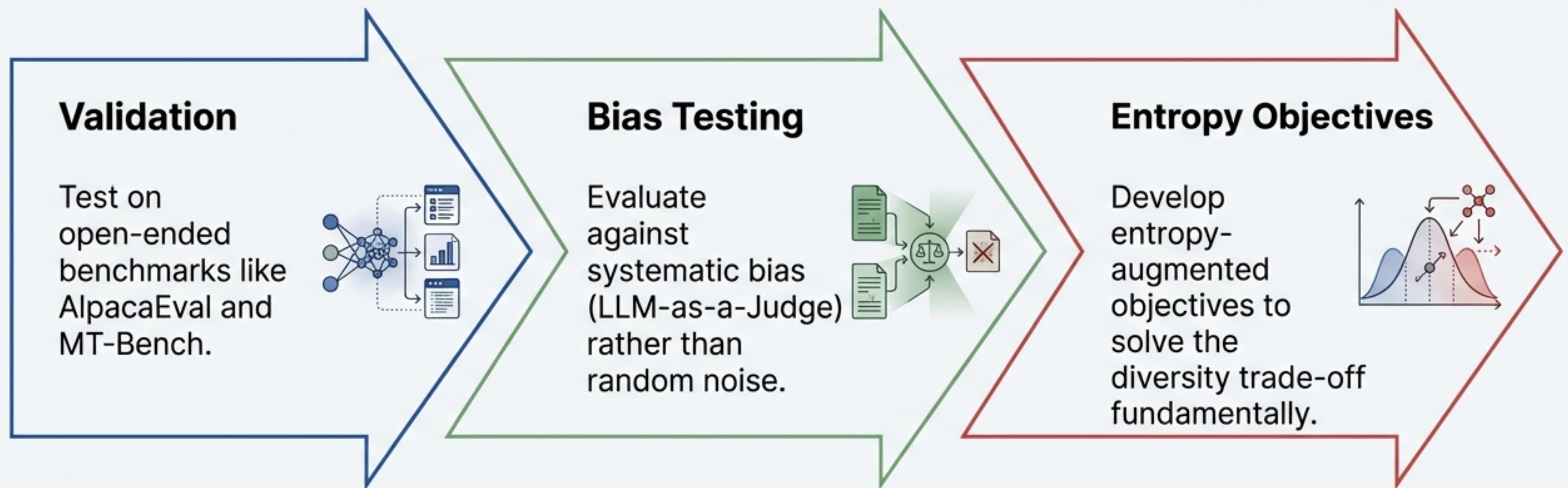


Simplify Pipeline

SDPO removes the need for a separate Reward Model training step.



The path forward: Scaling dense alignment to full-scale LLMs



SDPO bridges the gap between the verifiable precision of code and the creative ambiguity of language.