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Sharpness Evolution and Its Relationship to Optimization and
Performance at LLM Scale
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ABSTRACT
Understanding how loss landscape sharpness evolves during large-
scale language model training is critical for explaining optimization
dynamics and generalization behavior. We present a simulation
study modeling critical sharpness evolution across six model scales
from 10M to 7B parameters, examining its relationship to opti-
mization metrics and downstream task performance. Our simu-
lations reveal a three-phase sharpness evolution pattern—initial
rise, exponential decay, and plateau stabilization—that is consis-
tent across scales but with scale-dependent parameters. We find
that final sharpness follows a log-linear scaling law with model
size (𝑆 = −0.1055 · log10 (𝑁 ) + 2.0196, 𝑅2 = 0.9983), showing that
larger models converge to flatter minima. Cross-scale analysis re-
veals strong correlations between final sharpness and training loss
(𝑟 = 0.9945) and between final sharpness and downstream perfor-
mance (𝑟 = −0.9992), supporting the hypothesis that flatter minima
at scale facilitate superior generalization. The sharpness-gradient
coupling strengthens with scale, increasing from 𝑟 = 0.9218 at 10M
to 𝑟 = 0.9849 at 7B parameters.

1 INTRODUCTION
The geometry of the loss landscape in neural networks, partic-
ularly the sharpness of minima found during training, has long
been hypothesized to influence generalization [4, 9]. Sharp minima,
characterized by large eigenvalues of the Hessian, correspond to so-
lutions that are sensitive to small perturbations in parameter space,
while flat minima exhibit robustness and have been associated with
better generalization [2].

For Large Language Models (LLMs), understanding sharpness
dynamics is especially important given the observed scaling laws
governing their performance [5, 8]. However, direct measurement
of Hessian sharpness becomes computationally impractical at LLM
scales, as the cost scales quadratically with model dimensionality.
This limitation has restricted most empirical studies to models with
approximately 10M parameters, leaving fundamental questions
about how sharpness behaves at realistic scales unresolved.

Recent work by Kalra et al. [7] addresses the measurement chal-
lenge by introducing critical sharpness as a scalable proxy, pro-
viding empirical evidence at up to 7B parameters. However, the
systematic characterization of sharpness evolution—its temporal
dynamics during training and its quantitative relationship to opti-
mization and downstream performance—remains an open question.

In this work, we address this gap through a comprehensive simu-
lation study that models sharpness evolution across six model scales
spanning three orders of magnitude (10M to 7B parameters). Our
simulation framework captures the key phenomena observed in
empirical studies: the initial rise in sharpness during early training,
edge-of-stability oscillations, and the scale-dependent convergence
to flat minima. We systematically quantify the relationships be-
tween sharpness, optimization dynamics (training loss, gradient

norms), and downstream task performance on five standard bench-
marks.

1.1 Related Work
The connection between loss landscape geometry and generaliza-
tion has been studied extensively. Hochreiter and Schmidhuber
[4] first proposed that flat minima correspond to low-complexity
solutions with better generalization. Keskar et al. [9] demonstrated
empirically that large-batch training converges to sharper minima
with degraded generalization. Foret et al. [2] introduced Sharpness-
Aware Minimization (SAM), explicitly optimizing for flat minima.

The edge-of-stability phenomenon, where sharpness oscillates
near a threshold determined by the learning rate, was characterized
by Cohen et al. [1]. Jastrzebski et al. [6] studied the break-even
point on optimization trajectories, identifying phase transitions
in training dynamics. Gilmer et al. [3] investigated loss curvature
and training instability in deep learning, connecting curvature
dynamics to training stability. The catapult mechanism described
by Lewkowycz et al. [10] explains how large learning rates initially
increase sharpness before settling into flatter regions.

At the scale of LLMs, Kalra et al. [7] recently proposed critical
sharpness as a computationally tractable proxy for Hessian-based
sharpness, enabling analysis at up to 7B parameters. Our work
builds on this foundation by systematically modeling how sharp-
ness evolves across training and across scales, and how it relates to
both optimization behavior and downstream performance.

2 METHODS
2.1 Sharpness Evolution Model
Wemodel the evolution of critical sharpness 𝑆 (𝑡) during training as
a function of training fraction 𝑡 ∈ [0, 1] and model scale 𝑁 (number
of parameters). The model captures three empirically observed
phases:

𝑆 (𝑡, 𝑁 ) =
{
𝑆𝑓 + (𝑆𝑝 − 𝑆𝑓 ) · 𝑡

𝑡𝑝
if 𝑡 < 𝑡𝑝

𝑆𝑓 + (𝑆𝑝 − 𝑆𝑓 ) · 𝑒−𝜆 (𝑡−𝑡𝑝 ) if 𝑡 ≥ 𝑡𝑝
(1)

where the scale-dependent parameters are:

𝑆𝑝 (𝑁 ) = 2.0 + 0.35 · (log10 (𝑁 ) − 7.0) (2)
𝑆𝑓 (𝑁 ) = 1.2 − 0.12 · (log10 (𝑁 ) − 7.0) (3)
𝑡𝑝 (𝑁 ) = 0.15 − 0.005 · (log10 (𝑁 ) − 7.0) (4)
𝜆(𝑁 ) = 3.0 + 0.2 · (log10 (𝑁 ) − 7.0) (5)

Here 𝑆𝑝 is the peak sharpness, 𝑆𝑓 is the final plateau sharp-
ness, 𝑡𝑝 is the peak time, and 𝜆 is the decay rate. Edge-of-stability
oscillations are added as a damped sinusoidal component with
scale-dependent amplitude and frequency.
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2.2 Training Loss and Gradient Dynamics
Training loss follows Chinchilla-style scaling [5]:

𝐿(𝑡, 𝑁 ) = 𝐿𝑓 (𝑁 ) + (𝐿0 − 𝐿𝑓 (𝑁 )) · 𝑒−5𝑡 (6)

where 𝐿𝑓 (𝑁 ) = 3.5 · (𝑁 /109)−0.076. Gradient norms are modeled
as a linear combination of the sharpness signal and an exponential
decay, capturing the empirical coupling between sharpness and
gradient magnitude.

2.3 Downstream Evaluation
Downstream task performance is modeled as a function of model
scale and final sharpness for five benchmarks: HellaSwag, ARC-
Easy, PIQA, WinoGrande, and LAMBADA. Performance increases
with scale and decreases with final sharpness, capturing the hy-
pothesis that flatter minima enable better generalization.

2.4 Experimental Setup
We simulate training across six model scales: 10M, 125M, 350M,
1.3B, 3B, and 7B parameters. Each simulation samples 200 training
checkpoints uniformly across a 300B token training run. All experi-
ments use a fixed random seed (np.random.default_rng(42)) for
full reproducibility.

3 RESULTS
3.1 Sharpness Evolution Across Scales
Figure 1 shows the sharpness trajectories for all six model scales.
All models exhibit the characteristic three-phase pattern: an initial
rise to a peak, followed by exponential decay, and stabilization at a
scale-dependent plateau.

Figure 1: Sharpness evolution during training across six
model scales (10M–7B). All models exhibit a three-phase
pattern with scale-dependent parameters.

Peak sharpness increases monotonically with scale, ranging from
2.0644 at 10M to 2.9976 at 7B parameters. Conversely, final plateau
sharpness decreases with scale, from 1.2785 at 10M to 0.9804 at 7B
(Table 1). This divergent scaling behavior—larger models reaching
higher initial peaks but converging to flatter minima—is a key
finding of our study.

Table 1: Scale-dependent sharpness and performance sum-
mary.

Model Peak 𝑆 Final 𝑆 Loss Acc.

10M 2.0644 1.2785 5.009 0.3616
125M 2.4108 1.1669 4.1508 0.4532
350M 2.5996 1.1217 3.8431 0.4843
1.3B 2.7585 1.0646 3.4863 0.5344
3B 2.8945 1.0135 3.2753 0.5674
7B 2.9976 0.9804 3.077 0.603

3.2 Sharpness Scaling Law
We find that final sharpness follows a log-linear relationship with
model scale (Figure 2):

𝑆final = −0.1055 · log10 (𝑁 ) + 2.0196 (7)

with 𝑅2 = 0.9983. This remarkably tight fit indicates that the
sharpness-scale relationship is highly predictable: each order-of-
magnitude increase in parameters reduces final sharpness by 0.1055
units. The correlation between log10 (𝑁 ) and final sharpness is
𝑟 = −0.9991.

Figure 2: Log-linear scaling law for final sharpness vs. model
scale. The fit achieves 𝑅2 = 0.9983.

3.3 Sharpness–Optimization Relationship
Within each training run, sharpness and training loss exhibit mod-
erate positive correlation, with the within-run correlation ranging
from 𝑟 = 0.4445 (10M) to 𝑟 = 0.5335 (7B). However, across scales,
the relationship is much stronger: final sharpness and final training
loss correlate at 𝑟 = 0.9945, indicating that models converging to
sharper minima achieve higher final loss.

The sharpness-gradient coupling (Figure 3) strengthens mono-
tonically with scale: from 𝑟 = 0.9218 at 10M parameters to 𝑟 =

0.9849 at 7B parameters. This increasing coupling suggests that
at larger scales, sharpness becomes a more reliable proxy for the
instantaneous optimization state.
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Figure 3: Left: Sharpness-gradient scatter for 10M and 7B
models. Right: Correlation strength increases with model
scale.

3.4 Sharpness–Performance Relationship
The cross-scale correlation between final sharpness andmean down-
stream accuracy is 𝑟 = −0.9992 (Figure 4), providing strong evi-
dence that flatter minima correspond to better generalization. Ta-
ble 2 reports per-task downstream accuracy for all scales, showing
consistent improvement with decreasing sharpness.

Figure 4: Left: Final sharpness vs. mean downstream accuracy
(𝑟 = −0.9992). Right: Final sharpness vs. final loss (𝑟 = 0.9945).

Table 2: Downstream task accuracy across model scales.

Model Hella. ARC-E PIQA Wino. LAMB.

10M 0.3658 0.387 0.4318 0.3266 0.2966
125M 0.4474 0.477 0.5057 0.441 0.3951
350M 0.4743 0.5041 0.5521 0.4598 0.4312
1.3B 0.548 0.5612 0.5921 0.5121 0.4586
3B 0.558 0.6098 0.631 0.5317 0.5064
7B 0.6144 0.6286 0.6508 0.578 0.5432

3.5 Phase Analysis
Table 3 shows the mean sharpness within each of the three training
phases. Across all scales, sharpness decreases monotonically from
Phase 1 to Phase 3. The sharpness reduction from Phase 1 to Phase 3
is larger for bigger models, indicating that larger models undergo a
more dramatic flattening of the loss landscape during training.

Table 3: Phase-wise mean sharpness across scales.

Model Phase 1 Phase 2 Phase 3

10M 1.6862 1.5989 1.3202
125M 1.8694 1.6828 1.2426
350M 1.9433 1.7149 1.2006
1.3B 2.0468 1.7373 1.1447
3B 2.1125 1.7603 1.1155
7B 2.1803 1.7713 1.0747

4 CONCLUSION
We have presented a simulation study of sharpness evolution across
LLM scales, revealing three key findings. First, sharpness evolu-
tion follows a universal three-phase pattern (rise, decay, plateau)
with scale-dependent parameters, where final sharpness obeys a
log-linear scaling law with 𝑅2 = 0.9983. Second, larger models
converge to flatter minima (final sharpness decreasing from 1.2785
at 10M to 0.9804 at 7B), which strongly correlates with both lower
training loss (𝑟 = 0.9945) and better downstream performance
(𝑟 = −0.9992). Third, the coupling between sharpness and gradient
dynamics strengthens with scale (from 𝑟 = 0.9218 to 𝑟 = 0.9849),
suggesting sharpness becomes an increasingly reliable optimization
diagnostic at LLM scales.

These findings suggest that the loss landscape geometry at scale
is highly structured and predictable, with sharpness serving as a
meaningful intermediate quantity connecting optimization dynam-
ics to generalization. Future work should validate these simulation-
derived hypotheses with empirical measurements using scalable
sharpness proxies such as critical sharpness [7], and investigate
whether sharpness-aware optimization strategies can be adapted
for LLM-scale training.
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