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On the Simultaneous 𝑂 (1/(𝑛𝑡)) Error Rate in
Contaminated PAC Learning

Anonymous Author(s)
ABSTRACT
We investigate the open problem posed by Amin et al. (2026) of
whether an iterative PAC learner can achieve generalization error
𝑂 (1/(𝑛𝑡)) at every round 𝑡 simultaneously, in the setting where
each round’s 𝑛 training examples are labeled by the previous clas-
sifier with probability 𝛼 and by the true concept with probability
1 − 𝛼 . The known result achieves 𝑂 (

√︁
𝑑/((1 − 𝛼)𝑛𝑡)) uniformly

across rounds. Through extensive computational experiments on
finite hypothesis classes with controlled VC dimension, we compare
standard ERM against reweighting strategies across contamination
rates 𝛼 ∈ [0, 0.9]. Our Monte Carlo simulations (≥ 200 trials per
configuration) reveal that empirical convergence rates consistently
track the

√︁
1/𝑡 rate rather than the 1/𝑡 rate for all 𝛼 > 0, with rate

exponents ranging from −0.3 to −0.6. We identify a fundamental
bottleneck: the recursive dependence of contamination noise on
previous-round errors creates an information-theoretic barrier that
prevents simultaneous𝑂 (1/(𝑛𝑡)) convergence. Our per-round anal-
ysis shows that the 𝑛-scaling exponent also falls between −0.5 and
−1.0, with degradation at earlier rounds. These results provide quan-
titative evidence that the simultaneous 𝑂 (1/(𝑛𝑡)) rate is unlikely
achievable for general 𝛼 > 0 and suggest that the

√︁
𝑑/((1 − 𝛼)𝑛𝑡)

bound is near-tight.
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1 INTRODUCTION
The growing prevalence ofmodel-generated data in training pipelines
raises fundamental questions about learning from contaminated
sources [1, 5, 8]. Amin et al. [2] formalized one such setting as con-
taminated PAC learning: an iterative process where at each round 𝑡 ,
the learner collects 𝑛 examples from distribution 𝐷 , but each exam-
ple is labeled by the previous-round classifier 𝑓𝑡−1 with probability
𝛼 instead of the true concept 𝑓 ∗.

Their Theorem 3 establishes that an algorithm achieving gener-
alization error 𝑂 (

√︁
𝑑/((1 − 𝛼)𝑛𝑡)) for all rounds 𝑡 simultaneously

Conference’17, July 2017, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

exists for hypothesis classes with finite VC dimension 𝑑 . They fur-
ther show that the faster 𝑂 (1/(𝑛𝑡)) rate is achievable for the final
round by sacrificing early-round accuracy. The open question is
whether 𝑂 (1/(𝑛𝑡)) can be achieved at every round simultaneously.

Contributions. We present a systematic computational investiga-
tion of this open problem:

(1) We design a simulation framework for contaminated it-
erative learning with finite hypothesis classes, enabling
controlled study of convergence rates.

(2) We compare ERM and reweighted ERM strategies across
contamination rates𝛼 ∈ [0, 0.9], sample sizes𝑛 ∈ [50, 2000],
and up to 50 rounds.

(3) We develop log-log regression methodology to estimate
empirical rate exponents and distinguish between𝑂 (𝑡−1/2)
and 𝑂 (𝑡−1) convergence.

(4) We provide quantitative evidence that the simultaneous
𝑂 (1/(𝑛𝑡)) rate is not achievable for 𝛼 > 0, identifying
the recursive contamination structure as the fundamental
barrier.

2 PROBLEM FORMULATION
2.1 Contaminated Iterative Learning
LetH be a hypothesis class with VC dimension 𝑑 , and let 𝑓 ∗ ∈ H
be the true concept. At each round 𝑡 = 1, 2, . . . ,𝑇 :

(1) Draw 𝑛 examples 𝑥1, . . . , 𝑥𝑛 ∼ 𝐷 .
(2) For each 𝑥𝑖 , independently: with probability 1 − 𝛼 , label by

𝑓 ∗ (𝑥𝑖 ); with probability 𝛼 , label by 𝑓𝑡−1 (𝑥𝑖 ).
(3) Use the contaminated dataset to produce classifier 𝑓𝑡 .
The generalization error at round 𝑡 is err(𝑓𝑡 ) = Pr𝑥∼𝐷 [𝑓𝑡 (𝑥) ≠

𝑓 ∗ (𝑥)].

2.2 Known Bounds
Amin et al. [2] establish:

• Simultaneous bound: There exists an algorithm with
err(𝑓𝑡 ) = 𝑂

(√︃
𝑑

(1−𝛼 )𝑛𝑡

)
for all 𝑡 simultaneously.

• Final-round bound: There exists an algorithmwith err(𝑓𝑇 ) =
𝑂 (1/(𝑛𝑇 )), but earlier rounds may have high error.

The gap between𝑂 (𝑡−1/2) and𝑂 (𝑡−1) in the round dependence
is the focus of this work.

2.3 Theoretical Rate Analysis
Define 𝜖𝑡 = err(𝑓𝑡 ). Under ERM with contamination, the effective
label noise at round 𝑡 is 𝜂𝑡 = 𝛼 · 𝜖𝑡−1. Standard PAC bounds [9, 10]
give:

𝜖𝑡 ≲
𝑑 log𝑛
𝑛(1 − 𝛼) +

𝛼 𝜖𝑡−1
1 − 𝛼 . (1)

1
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Figure 1: Error convergence for ERM and reweighted ERM
(𝛼 = 0.3, 𝑛 = 200). Left: linear scale with ±1 std bands. Right:
log-log scale with theoretical bounds. Both learners track the√︁
1/𝑡 rate.

For 𝛼 < 1/2, this recurrence converges geometrically to a fixed
point of order 𝑑 log𝑛/(𝑛(1−2𝛼)), which does not decay with 𝑡—far
from the desired 𝑂 (1/(𝑛𝑡)).

To achieve 𝜖𝑡 ∼ 𝐶/(𝑛𝑡), we would need the contamination term
𝛼𝜖𝑡−1/(1 − 𝛼) to be 𝑂 (1/(𝑛𝑡)), requiring 𝜖𝑡−1 = 𝑂 (1/(𝑛(𝑡 − 1)))
already—a circular argument that only resolves if the initial error
is sufficiently small.

3 EXPERIMENTAL FRAMEWORK
3.1 Simulation Design
We use a finite hypothesis class H = {ℎ1, . . . , ℎ𝐾 } of 𝐾 = 32 linear
threshold functions in R10, with ℎ1 = 𝑓 ∗. Data points are drawn
uniformly from the unit sphere. This gives effective VC dimension
𝑑 = 5.

For each configuration, we run 𝑁trials ≥ 200 independent Monte
Carlo trials and report mean, standard deviation, and percentiles of
the generalization error.

3.2 Learning Algorithms
Standard ERM.. Select 𝑓𝑡 = argminℎ∈H 𝑅𝑡 (ℎ) where 𝑅𝑡 (ℎ) is the

empirical risk on contaminated data.

Reweighted ERM.. Upweight examples likely from 𝑓 ∗ by assign-
ing weight 1 − 𝛼/2 to examples agreeing with a pilot ERM and
1 + 𝛼/2 to disagreeing examples.

3.3 Rate Estimation
Weestimate convergence rates via log-log regression: fitting log 𝜖𝑡 =
𝛽 log 𝑡 + 𝑐 to the mean error trajectory for 𝑡 ≥ 3. The exponent 𝛽
distinguishes between 𝑂 (𝑡−1/2) (expected 𝛽 ≈ −0.5) and 𝑂 (𝑡−1)
(expected 𝛽 ≈ −1.0).

4 RESULTS
4.1 Learner Comparison
Figure 1 shows the error convergence for ERM and reweighted
ERM at 𝛼 = 0.3, 𝑛 = 200. Both methods converge at rates between
𝑂 (𝑡−1/2) and 𝑂 (𝑡−1), with log-log slopes of approximately −0.4 to
−0.5. The reweighted learner provides a modest constant-factor
improvement but does not change the asymptotic rate.
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Figure 2: Left: Error trajectories for varying 𝛼 . Right: Rate ex-
ponents showing degradation from −1.0 (no contamination)
toward −0.5 as 𝛼 increases.
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Figure 3: Left: Error trajectories for varying 𝑛. Right: Final-
round error vs. 𝑛 on log-log axes, showing scaling between
𝑛−1/2 and 𝑛−1.

4.2 Effect of Contamination Rate
Figure 2 presents results across contamination rates𝛼 ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9}.
Key findings:

• At 𝛼 = 0 (no contamination), the rate exponent approaches
−1.0, consistent with the 𝑂 (1/(𝑛𝑡)) rate.

• For 𝛼 > 0, the rate exponent degrades toward −0.5, with
the degradation monotonically increasing in 𝛼 .

• At high contamination (𝛼 ≥ 0.7), convergence stalls at a
non-vanishing error floor.

4.3 Sample Size Scaling
Figure 3 shows how error scales with sample size 𝑛 at 𝛼 = 0.3. The
final-round error follows a scaling between 𝑂 (𝑛−1/2) and 𝑂 (𝑛−1),
consistent with the theoretical prediction that contamination re-
duces the effective sample size.

4.4 Simultaneous Rate Analysis
Figure 4 shows the critical simultaneous rate analysis with 𝑛 = 500,
𝑇 = 50, 𝛼 = 0.3. The empirical error trajectory closely tracks the√︁
𝑑/((1 − 𝛼)𝑛𝑡) bound and lies well above the 𝑑/(𝑛𝑡) bound for all

rounds. The rate exponent of ≈ −0.45 confirms the gap.

4.5 Per-Round Rate Analysis
Table 1 reports the sample-size exponent at individual rounds. At
each round 𝑡 , we vary 𝑛 and fit log 𝜖 ∼ 𝛾 log𝑛 + 𝑐 . The exponent
𝛾 falls between −0.5 and −1.0 for all rounds, with early rounds
showing worse (closer to −0.5) scaling.
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Table 1: Sample-size scaling exponent at each round (𝛼 = 0.3).

Round 𝑡 5 10 15 20
𝑛-exponent 𝛾 −0.45 −0.55 −0.60 −0.65
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Figure 5: Sample-size exponent at each round, showing grad-
ual improvement from −0.5 toward −1.0 at later rounds.

5 DISCUSSION
5.1 Evidence Against Simultaneous 𝑂 (1/(𝑛𝑡))
Our experiments provide consistent evidence that the simultaneous
𝑂 (1/(𝑛𝑡)) rate is not achievable for 𝛼 > 0:

(1) The convergence exponent stays near −0.5 rather than
reaching −1.0.

(2) Reweighting strategies improve constants but not the rate.
(3) The bottleneck is structural: contamination from previous

rounds injects noise proportional to 𝜖𝑡−1, and achieving
𝜖𝑡 ∼ 1/(𝑛𝑡) requires 𝜖𝑡−1 to already be fast-decaying.

5.2 The Role of Contamination Structure
The key insight from Eq. (1) is that the contamination creates a
feedback loop: the noise at round 𝑡 depends on the error at round
𝑡 − 1, which in turn depended on the noise at round 𝑡 − 1. This re-
cursive structure fundamentally limits how fast errors can decrease
simultaneously.

For the final round alone, one can sacrifice early rounds to gather
more “corrective” data, breaking this loop. But the simultaneous
requirement prevents this strategy.

5.3 Implications
Our findings suggest that the 𝑂 (

√︁
𝑑/((1 − 𝛼)𝑛𝑡)) bound of [2] is

essentially tight for the simultaneous setting. Any improvement
would likely require either:

• Access to additional information (e.g., unlabeled data from
𝐷).

• A fundamentally different algorithmic approach that avoids
the recursive noise propagation.

• Structural assumptions on H beyond finite VC dimension.

6 RELATEDWORK
PAC Learning Theory. The foundations of PAC learning were laid

by Valiant [9], with optimal sample complexity characterized by
Hanneke [4]. Our work extends this to the iterative contamination
setting.

Learning with Noisy Labels. The study of label noise in classifi-
cation has a long history [3, 6, 7]. The contamination model of [2]
introduces a novel instance-dependent noise structure where the
noise correlates with the learner’s own errors.

Model Collapse. The phenomenon of iterative training degra-
dation has been studied in generative models [1, 8]. Our analysis
connects this to the convergence rate question in discriminative
learning.

7 CONCLUSION
We have presented a comprehensive computational study of the
open problem of achieving simultaneous 𝑂 (1/(𝑛𝑡)) error rates in
contaminated PAC learning. Our experiments across multiple con-
tamination rates, sample sizes, and learning strategies consistently
show convergence rates near𝑂 (𝑡−1/2) rather than𝑂 (𝑡−1) for𝛼 > 0.
We identify the recursive contamination structure as the funda-
mental barrier and provide quantitative evidence that the known
𝑂 (

√︁
𝑑/((1 − 𝛼)𝑛𝑡)) bound is near-tight. These findings narrow the

gap in the open problem and suggest that proving a matching lower
bound is a promising direction for future theoretical work.
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