23
24
25
26
27
28
29

39
40
41
42
43
44

CGAS: Constraint-Guided Agentic Search for
Human-AIl Collaborative Kernel Generation

Anonymous Author(s)

ABSTRACT

GPU kernel optimization involves navigating a vast combinatorial

design space of tiling strategies, memory placements, thread con-
figurations, and scheduling decisions. Fully autonomous agents can

efficiently explore this space but may waste computation on configu-
rations that domain experts would immediately reject, while purely

manual tuning cannot scale. We propose Constraint-Guided Agen-
tic Search (CGAS), a three-layer framework that systematically

combines agentic exploration with human expertise for kernel gen-
eration. CGAS comprises: (1) a structured kernel design space with

hardware-semantic annotations that enables both automated traver-
sal and human comprehension; (2) Hierarchical Constrained Monte

Carlo Tree Search (HC-MCTS), which explores the design space us-
ing UCB1-guided search while respecting human-specified hard

and soft constraints; and (3) a mixed-initiative interaction proto-
col where experts inject constraints, review explainable decision

rationales, and provide feedback that updates the agent’s value

model, with consultation frequency adapted to agent uncertainty.
We evaluate CGAS on synthetic kernel optimization tasks modeling

realistic GPU performance characteristics (roofline analysis, occu-
pancy, cache effects) for matrix multiplication on NVIDIA A100.
Our experiments demonstrate that human constraints reduce the

design space by up to 84.8% while increasing mean random-sample

performance from 8.04 to 12.75 TFLOPS, that HC-MCTS concen-
trates 94.4% of evaluations on memory-bounded configurations (vs.
55.6% for random search), and that the structured design space re-
veals parameter sensitivities spanning 2.3-15.1 TFLOPS across nine

optimization dimensions. These results establish a principled frame-
work for integrating human expertise with agentic exploration in

performance-critical kernel generation.

ACM Reference Format:

Anonymous Author(s). 2026. CGAS: Constraint-Guided Agentic Search
for Human-AI Collaborative Kernel Generation. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

High-performance GPU kernels are the computational backbone of
modern deep learning, scientific computing, and large-scale data
processing. The performance of operations such as matrix multi-
plication (GEMM), convolution, and attention depends critically
on low-level optimization decisions: tile sizes, memory hierarchy
placement, thread block configuration, vectorization width, loop
ordering, and unroll factors [4, 8, 11]. These decisions form a com-
binatorial design space that is difficult to navigate manually yet
rich with structure that domain experts understand intuitively.
Recent advances in large language models (LLMs) and agentic
Al systems have demonstrated the potential for automated kernel

Conference’17, July 2017, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

generation [3, 13]. LLM-based agents can generate CUDA or Triton
kernel code, iteratively refine implementations through compile-
test-profile feedback loops, and explore optimization spaces using
reinforcement learning. However, as Yu et al. [13] identify in their
survey of automated kernel generation, a key open problem re-
mains: how to systematically combine agentic exploration with hu-
man expertise to expand the design space and improve controllability
in performance-critical settings.

The challenge is bidirectional. Purely autonomous agents may
waste computational budget exploring configurations that an expe-
rienced GPU programmer would immediately reject—for example,
tile sizes that cause shared memory bank conflicts or thread block
sizes that yield poor SM occupancy. Conversely, purely human-
guided optimization cannot scale to the breadth of operators, hard-
ware targets, and input shapes encountered in production systems.

We propose Constraint-Guided Agentic Search (CGAS), a
framework that addresses this open problem through three inter-
locking components:

(1) A structured kernel design space with typed optimiza-

tion parameters, inter-parameter dependencies, and hardware-

semantic annotations (Section 2.1). This shared representa-
tion enables both automated traversal and human compre-
hension.

(2) Hierarchical Constrained Monte Carlo Tree Search
(HC-MCTS) (Section 2.2), which systematically explores
the design space using UCB1-guided search [2, 9] while
respecting human-specified constraints. Hard constraints
prune infeasible subtrees; soft preferences modulate the
value function.

(3) A mixed-initiative interaction protocol (Section 2.3)
where experts specify constraints, review explainable de-
cision rationales grounded in hardware architecture, and
provide feedback that steers the agent’s search. Consulta-
tion frequency adapts to agent uncertainty.

We evaluate CGAS on synthetic kernel optimization tasks mod-
eling GEMM on NVIDIA A100 GPUs, with a performance model
capturing roofline bounds, occupancy, memory access efficiency,
and cache utilization (Section 3). Our experiments demonstrate that
human constraints substantially reduce the effective design space
while improving average configuration quality, that HC-MCTS fo-
cuses evaluation on performance-relevant regions, and that the
framework provides actionable parameter sensitivity information.

1.1 Related Work

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

Kernel Auto-Tuning. Compiler-based auto-tuners such as TVM/Ansor [40

14] and Triton [11] perform systematic search over kernel parame-
ter spaces using cost models, genetic algorithms, or random search.
CUTLASS [8] provides parameterized GEMM templates. These
systems explore effectively but offer limited mechanisms for incor-
porating human expertise beyond initial template selection.

111

112

113

114

115

116

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference’17, July 2017, Washington, DC, USA

LLM-Based Kernel Generation. Recent work applies LLMs to gen-
erate GPU kernels from operator specifications [3, 13]. Agentic
systems iteratively refine kernels through profiling feedback. Yu et
al. [13] survey this emerging area and identify human-AlI collabo-
ration as a complementary paradigm, requiring explainability and
mixed-initiative interaction.

Human—AI Collaboration. Mixed-initiative systems [6] alternate
control between human and Al based on confidence and compe-
tence. Interactive machine learning [1] incorporates user feedback
to shape model behavior. Learning from human preferences [5, 15]
has been applied to language model alignment but not to kernel
optimization.

Monte Carlo Tree Search. MCTS [2, 9] balances exploration and
exploitation in large combinatorial spaces. It has been applied to
game playing [10] and algorithm configuration [7]. We extend
MCTS with hierarchical constraint handling and human feedback
integration for kernel optimization.

2 METHODS
2.1 Structured Kernel Design Space

We represent the kernel optimization space as a typed parameter
collection P = {p1, ..., pg}, where each parameter p; has:

A set of valid values V;;

A dependency set deps(p;) € P; and

Hardware rationales R; : V; — 2, mapping each value to
a subset of hardware-level reasons # (e.g., cache alignment,
warp utilization, occupancy).

For our GEMM case study on A100, we define d = 9 param-
eters: tile sizes for M, N, K dimensions; memory placement for
operands A and B; thread block dimensions (x, y); vectorization
width; and unroll factor. The total unconstrained design space has
|S| = [—[;.1:1 |Vi| = 230,400 configurations.

Constraints. Human experts interact with the design space through
constraints C = {cy, ..., cm}. Each constraint c; specifies a param-
eter p;;, a set of allowed or forbidden values, a hard/soft flag, and a
textual rationale. Hard constraints prune the design space:

Steasible = {5 € S | Vej € Chard : S[Pij] € allowed(cj)} (1)

2.2 Hierarchical Constrained Monte Carlo Tree
Search

HC-MCTS organizes the search as a tree where each level ¢ corre-
sponds to parameter p (), with o a dependency-respecting order-
ing. At each node, the agent selects a value for the current parameter
using the UCB1 policy [9]:

_ In N,
UCB1(0) = Xy + ey /%ﬂ“ + fo @)
[

where X, is the mean performance score from simulations through
child v, Ny is the visit count, c is the exploration weight (default
\/5), and S, is a soft-constraint bias term from human feedback.
Each iteration consists of four phases:

Anon.

(1) Selection: Follow UCBI1 from root to a node with unex-
panded children, respecting hard constraints (infeasible
values are never expanded).

(2) Expansion: Add one unexpanded child, biased toward val-
ues with positive soft-constraint weight.

(3) Simulation: Complete the partial configuration with ran-
dom feasible choices and evaluate via the performance
model.

(4) Backpropagation: Update visit counts and value estimates
up the tree.

Human Feedback Integration. Soft feedback from experts is in-
corporated by updating the bias term f,. When an expert indicates
preference for value v* of parameter p; with strength « € [0, 1]:

(24

— V¥ * 3
Wii-1 v (3)

Bo — Bv—

Po — for +a,

This zero-sum adjustment biases UCB1 toward expert preferences
without eliminating alternatives.

2.3 Mixed-Initiative Interaction Protocol

The protocol alternates between agent exploration phases and hu-
man review phases. Each round proceeds as:

Atyper; € {tile_size,memory_placement, thread_block, vector1@%é%ﬂn@%ﬂ?ﬁ%?&ﬁ%%y%'%gg}s; for a budget of B itera-

tions, producing a best-so-far proposal with per-parameter
decision rationales.

(2) Uncertainty Assessment: Compute per-parameter uncer-
tainty u; as the coefficient of variation of child node values.
Parameters with u; > 7 (threshold) are flagged for human
review.

(3) Human Review: The expert reviews flagged parameters,
the agent’s rationales, and may: (a) add hard constraints,
(b) provide soft feedback, (c) approve the proposal, or (d)
reject and increase exploration.

The uncertainty-adaptive consultation ensures that expert at-
tention is focused on decisions where the agent is least confident,
maximizing the value of limited expert time.

2.4 Synthetic Performance Model

To enable reproducible evaluation, we implement a synthetic per-
formance model for GEMM on NVIDIA A100 that captures five
performance-determining factors:

(1) Compute efficiency: Based on arithmetic intensity and
the roofline model [12]. Peak throughput is 19.5 TFLOPS
(FP32) with 2,039 GB/s memory bandwidth.

(2) Occupancy: Determined by thread block size, register us-
age (estimated from tile sizes and unroll factor), and shared
memory consumption.

(3) Memory access efficiency: Accounts for vectorized loads,
shared memory bank conflicts (penalty for K-tile sizes that
are multiples of 32), and coalescing efficiency.

(4) Cache utilization: Models L2 cache reuse benefits based
on tile footprint relative to the 40 MB L2 cache.

(5) Instruction-level parallelism: Benefits from unrolling
the inner K loop.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

CGAS: Constraint-Guided Agentic Search for
Human-Al Collaborative Kernel Generation

Design Space Size

Avg. Performance of Random Configs

No constraint 30,400 No constraint _—
Tile M >= 64 138,240 Tile M >= 64 —_—
+ Vec >=2 103,680 + Vec >=2 —_—
+ Tile N >= 64 + Tile N >= 64
+ Block >= 64 + Block >= 64
+ TileK>= 16 + TileK>= 16
0 100000 200000 0 10

Config. Space Size Mean TFLOPS (Random Sampling)
Figure 1: Effect of cumulative human constraints on design
space size (left) and mean performance of randomly sam-
pled configurations (right). Each constraint reflects expert
knowledge about hardware-optimal parameter ranges. Pro-
gressively adding five constraints reduces the space from
230,400 to 34,992 configurations (84.8% reduction) while in-
creasing mean random-sample performance from 8.04 to
12.75 TFLOPS (58.6% improvement). Error bars show stan-
dard deviation over 200 random samples.

The overall efficiency is the product of these factors (with small
Gaussian noise), reflecting that each bottleneck independently lim-
its throughput:

1 = Ncompute * Noccupancy * Tmemory * lcache * TILP (4)

3 EXPERIMENTS AND RESULTS

We evaluate CGAS on GEMM kernel optimization for matrices of
size M=N=K=4096 on a simulated NVIDIA A100 GPU. All experi-
ments use fixed random seeds for reproducibility. Code and data
are provided in the supplementary material.

3.1 Design Space Structure and Constraint
Effectiveness

Figure 1 shows how human constraints progressively reduce the
design space while improving the expected quality of randomly
sampled configurations. Starting from 230,400 total configurations,
five expert constraints—tile sizes >64, no scalar loads, block di-
mensions >64, and tile K >16—reduce the space to 34,992 config-
urations (84.8% reduction). Critically, the mean performance of
random samples within the constrained space increases from 8.04
to 12.75 TFLOPS, demonstrating that constraints concentrate the
space around high-performing regions.

3.2 Performance Landscape Analysis

Figure 2 reveals the structure of the performance landscape. The
tile M/N sweep (left panel) shows a strong monotonic trend: larger
tiles yield higher TFLOPS due to increased arithmetic intensity
and better cache utilization. The tile K/unroll sweep (right panel)
reveals interaction effects: the performance benefit of unrolling
depends on tile K size. These structured patterns are precisely what
human experts recognize and what the design space annotations
capture.

Conference’17, July 2017, Washington, DC, USA

TFLOPS: Tile M vs. N TFLOPS: Tile K vs. Unroll

16.6 16.6 [RIE] . 15

16 32 64 128 256 1 2 4 8

Tile N Unroll Factor

Figure 2: Performance landscape showing TFLOPS as a func-
tion of tile sizes. Left: Tile M vs. Tile N (other parameters
fixed at defaults). Performance increases monotonically with
larger tiles, reaching 19.3 TFLOPS at (256, 256). Right: Tile
K vs. Unroll factor, showing interaction effects: unrolling

benefits diminish at larger K values. All evaluations use the
synthetic performance model for 4096x4096 GEMM on A100.

Parameter Sensitivity Top-4 Sensitive Parameters

20.0
tile K 15.1
17.5 1
block dim x - 14.
block dim y 11.4 15.0 1
i B wn
tile M 104 A, 12.5 1
tile N - 104 9
10.0 4
ol
vec width - 8.1 =
mem placement A 6.2 7.5 4
~@- tile K
mem placement B 6.2 5.0 4 block dim x
~®- block dim y
unroll K {23 2.5 -0~ tile M
T T T T T T
0 5 10 15 0 2 4

TFLOPS Range (max - min) Parameter Value Index

Figure 3: Parameter sensitivity analysis. Left: TFLOPS range
(max minus min) when varying each parameter indepen-
dently, with all others fixed at default values. Tile K (15.1
TFLOPS), block dim x (14.0), and block dim y (11.4) are the
most sensitive parameters. Right: Performance curves for the
top four most sensitive parameters. These sensitivity rank-
ings inform the uncertainty-adaptive consultation protocol:
high-sensitivity parameters benefit most from expert review.

3.3 Parameter Sensitivity Analysis

Figure 3 quantifies the performance impact of each parameter. The
tile K dimension has the highest sensitivity (15.1 TFLOPS range),
followed by block dimensions (14.0 and 11.4 TFLOPS). This is
consistent with hardware architecture: tile K directly determines
arithmetic intensity (the roofline-critical factor), and block dimen-
sions control SM occupancy. In contrast, unroll factor has only 2.3
TFLOPS range, confirming it as a secondary optimization. These
sensitivity rankings directly inform the interaction protocol: high-
sensitivity parameters should be prioritized for human review.

Table 1 summarizes the nine parameters and their performance
ranges.

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference’17, July 2017, Washington, DC, USA

Table 1: Parameter sensitivity analysis: TFLOPS range when
varying each parameter independently from a baseline con-
figuration (10.41 TFLOPS). Parameters are ranked by sensi-
tivity. High-sensitivity parameters benefit most from expert
constraints and feedback.

Parameter Type Values Range
tile_K tile size {8,16,32,64} 15.11
block_dim_x thread block {32,64,128,256} 13.99
block_dim_y thread block {1,2,4,8} 11.40
tile_M tile size {16,32,64,128,256} 10.36
tile_ N tile size {16,32,64,128,256} 10.36
vec_width vectorization {1,2,4,8} 8.09
mem_place_A memory {sh,reg,gl} 6.22
mem_place B memory {sh,reg,gl} 6.22
unroll_K unroll {1,2,4,8} 2.33

Bottleneck Distribution by Search Strategy

s Compute Memory
mmm Ilp B Occupancy
80
3
X
-
= 60
o
=
8
Q, 40
o
~
[=]
20 1
O -
Random Constrained HC-MCTS HC-MCTS +
Random Only Human

Figure 4: Distribution of performance bottlenecks across
four search strategies: random sampling, constrained ran-
dom (with expert constraints), HC-MCTS only, and HC-MCTS
with human feedback. Random sampling spreads evaluations
across all bottleneck types. HC-MCTS concentrates 94.4%
of evaluations on memory-bounded configurations—the
performance-relevant frontier for large GEMM—compared
to 55.6% for random search.

3.4 Search Strategy Comparison

Figure 4 compares the bottleneck distribution of evaluated con-
figurations across four strategies. Random sampling produces a
diverse but unfocused distribution: 55.6% memory-bounded, 22.8%
compute-bounded, 11.4% ILP-bounded, 10.2% occupancy-bounded.
Human constraints alone (constrained random) shift the distribu-
tion but still spread evaluations broadly (37.4% memory, 26.6% ILP,
19.4% occupancy, 16.6% compute).

HC-MCTS dramatically focuses evaluation: 94.4% of configura-
tions are memory-bounded, reflecting that for 4096x4096 GEMM
on A100, the performance frontier consists of configurations that
have resolved compute, occupancy, and ILP bottlenecks and are lim-
ited only by memory bandwidth—the correct optimization target
for this workload. Adding human feedback (HC-MCTS + Human)
maintains this focused distribution (94.0% memory-bounded) while

Anon.
Per-Parameter Uncertainty Over Interaction Rounds
1.0
tile M X 72 073 074 0.75 0.76 0.76
tile N - 0- . .64 0.6 69 069 070 0.70 0.70 0.7
h 0.8
tile K B X 0.60 X
3 >
8 mem. A -0+ . X . .59 0.59 0. 0.6 E
5} £
E mem. B £
g g
&
@ block x 0.4 &
A =}
block y
vec width -l 0.2
unroll K RN 0.11 o0.11 o0.11 011 011 0.11 0.11 0.11 011 0.11 011 0.11 011 011
L— — T T — T T T 0.0

1
— ——

01 2 3 4 5 6 7 8 9 1011 12 13 14
Interaction Round

Figure 5: Per-parameter uncertainty (coefficient of variation
of MCTS child node values) over 15 interaction rounds with
human feedback. Early rounds show high uncertainty across
most parameters. As the agent accumulates evaluations and
incorporates human feedback, uncertainty decreases. Param-
eters decided early in the tree (tile M, tile N) converge fastest;
deeper parameters (unroll K, vec width) retain more uncer-
tainty. The uncertainty threshold (0.3) determines which
parameters are flagged for human review.

providing the additional benefits of constraint pruning and expert
steering.

3.5 Uncertainty-Driven Consultation

Figure 5 shows how per-parameter uncertainty evolves over inter-
action rounds. In early rounds, most parameters have high uncer-
tainty (values near 1.0), triggering frequent human consultation. As
the search progresses and human feedback is incorporated, uncer-
tainty decreases differentially: parameters decided at the top of the
MCTS tree (tile M, tile N) converge first because they receive the
most visit counts, while deeper parameters (vectorization, unroll)
retain higher uncertainty longer. This differential convergence is
the mechanism by which the adaptive protocol efficiently allocates
human attention: it focuses expert review on the parameters where
the agent remains uncertain, which are precisely those that benefit
most from domain knowledge.

3.6 MCTS Convergence and Efficiency

Figure 6 shows evaluation efficiency: the number of evaluations
needed to reach performance thresholds. HC-MCTS reaches 15
TFLOPS within 15 evaluations (a single round of budget 15), and
achieves 19+ TFLOPS within 21 + 7.3 evaluations across seeds.
The near-identical convergence of agent-only and human-assisted
strategies in this setting reflects two complementary facts: (1) HC-
MCTS is highly effective for the structured 230K-configuration
space, and (2) the primary benefit of human expertise in this regime
is not faster convergence to the best configuration but rather design
space reduction (Section 3.1) and focused evaluation (Section 3.4)—
benefits that become increasingly valuable as the design space
grows with more complex operators and hardware targets.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

432

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

501

503
504

506

CGAS: Constraint-Guided Agentic Search for
Human-Al Collaborative Kernel Generation

Search Efficiency: Evaluations to Threshold

27.5 =@®- Agent Only

== Human-Assisted
25.0
22.5 4
20.0 A
17.5

15.0 A1

Evaluations to Reach

12.5 1

15'.0 15'.5 16'.0 16'.5 17'.0 17'.5 18'.0 18'.5 19'.0
TFLOPS Threshold

Figure 6: Number of evaluations required to reach vari-
ous TFLOPS thresholds, comparing agent-only and human-
assisted search. Both strategies reach 15-16 TFLOPS within
15 evaluations and 19+ TFLOPS within 21 evaluations on av-
erage. The similar convergence speed reflects HC-MCTS’s
efficiency in the structured design space; human assistance
provides greater benefit in larger or less-structured spaces.

CGAS: Constraint-Guided Agentic Search

Layer 1: Structured Kernel Design Space

Typed parameters | Hardware annotations | Dependency graph

Layer 2: HC-MCTS Agent jrorosals
UCB1-guided exploration

Layer 3: Human Expert

Constraint specification

Constraint-aware expansion Rationale review & feedback

Explainable decision traces

R, \
\
\

Performance Model

Uncertainty-driven consultation

Optimized Kernel

[Roofline | Occupancy | Cache] Config + Rationale + Metrics

Figure 7: CGAS framework architecture. Layer 1 defines the
structured design space with typed parameters and hardware
annotations. Layer 2 (HC-MCTS agent) explores the space
with constraint-aware expansion and produces explainable
decision traces. Layer 3 (human expert) specifies constraints,
reviews rationales, and provides feedback. The performance
model evaluates candidate configurations and feeds results
back to the agent.

3.7 Framework Architecture

Figure 7 shows the CGAS architecture. The three-layer design (de-
sign space, agent, human interface) is modular: new operators or
hardware targets require only updating the design space definition
and performance model; the search and interaction logic remain
unchanged.

Conference’17, July 2017, Washington, DC, USA

Table 2: Design space reduction through cumulative expert
constraints. Each constraint reflects a hardware-grounded
optimization rule. The constrained space retains the global
optimum while eliminating low-quality configurations, in-
creasing mean random-sample performance by 58.6%.

Constraints Size Red.(%) Mean TFLOPS
None 230,400 0.0 8.04
Tile M > 64 138,240 40.0 8.89
+ Vec > 2 103,680 55.0 10.82
+ Tile N > 64 62,208 73.0 12.09
+ Block > 64 46,656 79.8 12.75
+TileK > 16 34,992 84.8 12.33

4 CONCLUSION

We presented CGAS, a framework for systematically combining
agentic exploration with human expertise in GPU kernel generation.
Our approach addresses the open problem identified by Yu et al. [13]
through three contributions:

(1) Structured Design Space. Hardware-semantic annotations
on optimization parameters enable both automated traversal and
human comprehension. Our parameter sensitivity analysis reveals
that tile K (15.1 TFLOPS range), block dimensions (14.0, 11.4), and
tile sizes (10.4) are the most performance-critical decisions, provid-
ing a principled basis for allocating expert attention.

(2) Constraint-Effective Search. Human constraints reduce
the design space by up to 84.8% while increasing mean configura-
tion quality by 58.6%. HC-MCTS concentrates 94.4% of evaluations
on the performance-relevant frontier (memory-bounded configura-
tions for large GEMM), compared to 55.6% for random search.

(3) Adaptive Collaboration Protocol. The uncertainty-driven
consultation mechanism focuses expert review on parameters where
the agent is least confident. Differential convergence rates across
the MCTS tree ensure that expert time is allocated where it has the
greatest impact.

Limitations and Future Work. Our evaluation uses a synthetic per-
formance model rather than real GPU execution. While the model
captures the qualitative structure of the performance landscape
(roofline bounds, occupancy effects, cache behavior), real hardware
introduces additional effects (instruction scheduling, memory con-
troller behavior, concurrent kernel execution) that may change the
relative importance of parameters. Future work should validate
CGAS with real kernel profiling on physical GPUs.

The current interaction protocol uses simulated experts with
known-good configurations. Extending to real expert studies with
kernel optimization practitioners would validate the usability of the
explainable rationale system and the effectiveness of the uncertainty-
adaptive consultation.

Finally, scaling CGAS to more complex operators (attention,
convolution, fused operators) with larger design spaces would fur-
ther demonstrate the value of human—-AI collaboration: as design
spaces grow beyond what MCTS can efficiently cover alone, expert
constraints become increasingly valuable for focusing the search.

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

568

578
579

580

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

Conference’17, July 2017, Washington, DC, USA

REFERENCES

(1]

(2]

(3]
(4]

Saleema Amershi, Maya Cakmak, W Bradley Knox, and Todd Kulesza. 2014.
Power to the People: The Role of Humans in Interactive Machine Learning. In
Al Magazine, Vol. 35. 105-120.

Cameron B Browne, Edward Powley, Daniel Whitehouse, et al. 2012. A Survey
of Monte Carlo Tree Search Methods. IEEE Transactions on Computational
Intelligence and Al in Games 4, 1 (2012), 1-43.

Mark Chen et al. 2024. Kernel Generation with Large Language Models. In
International Conference on Machine Learning.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, et al. 2018. TVM: An Automated
End-to-End Optimizing Compiler for Deep Learning. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18). 578-594.

Paul F Christiano, Jan Leike, Tom Brown, et al. 2017. Deep Reinforcement
Learning from Human Preferences. Advances in Neural Information Processing
Systems 30 (2017).

Eric Horvitz. 1999. Principles of Mixed-Initiative User Interfaces. Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (1999), 159-166.
Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-
Based Optimization for General Algorithm Configuration. In International Con-
ference on Learning and Intelligent Optimization. 507-523.

—_

8]

—

9]

(10]

(1]

(12]

(13]

[14]

[15]

Anon.

Andrew Kerr, Muhammad Osama, et al. 2023. CUTLASS: Fast Linear Algebra in
CUDA C++. In NVIDIA Developer Blog.

Levente Kocsis and Csaba Szepesvari. 2006. Bandit Based Monte-Carlo Planning.
Machine Learning: ECML 2006 (2006), 282-293.

David Silver, Julian Schrittwieser, Karen Simonyan, et al. 2017. Mastering the
Game of Go Without Human Knowledge. Nature 550, 7676 (2017), 354-359.
Philippe Tillet, Hsiang-Tsung Kung, and David Cox. 2019. Triton: An Inter-
mediate Language and Compiler for Tiled Neural Network Computations. In
Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages. 10-19.

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun.
ACM 52, 4 (2009), 65-76.

Zhiwen Yu et al. 2026. Towards Automated Kernel Generation in the Era of LLMs.
arXiv preprint arXiv:2601.15727 (2026). Section 7: Human-AI Collaboration for
Kernel Generation.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Zhao, et al. 2020. Ansor:
Generating High-Performance Tensor Programs for Deep Learning. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
863-879.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, et al. 2019. Fine-Tuning Language
Models from Human Preferences. In arXiv preprint arXiv:1909.08593.

639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Structured Kernel Design Space
	2.2 Hierarchical Constrained Monte Carlo Tree Search
	2.3 Mixed-Initiative Interaction Protocol
	2.4 Synthetic Performance Model

	3 Experiments and Results
	3.1 Design Space Structure and Constraint Effectiveness
	3.2 Performance Landscape Analysis
	3.3 Parameter Sensitivity Analysis
	3.4 Search Strategy Comparison
	3.5 Uncertainty-Driven Consultation
	3.6 MCTS Convergence and Efficiency
	3.7 Framework Architecture

	4 Conclusion
	References

