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Theoretical Validation of the Demonstration-Conditioned Teacher
as Near-Optimal and Minimally Deviating

Anonymous Author(s)

ABSTRACT

Self-Distillation Fine-Tuning (SDFT) assumes that conditioning a
foundation model on an expert demonstration produces a teacher
policy that approximates the optimal next policy under a trust-
region-regularized reinforcement learning objective. While SDFT
has shown strong empirical results for continual learning in lan-
guage models, this in-context learning (ICL) assumption lacks the-
oretical justification. We provide three complementary theoretical
frameworks establishing rigorous guarantees for this assumption.
First, under an exponential family model of the pretraining task
distribution, we prove that the demonstration-conditioned policy
exactly recovers the trust-region optimal policy in the infinite-
demonstration limit, with a convergence rate of O(d/n) where d is
the parameter dimension and n is the number of demonstrations.
Second, we derive distribution-free PAC-Bayes bounds showing
that the reward suboptimality of the demonstration-conditioned
policy scales as O(1/+/n) with high probability. Third, we introduce
a variational inference perspective yielding an exact decomposition:
the reward gap and KL excess sum to f times the variational gap
KL(7gemoll77*), simultaneously establishing both near-optimality
and minimal deviation from a single quantity. Extensive numerical
simulations on discrete policy spaces with 50 actions verify all the-
oretical predictions, with PAC-Bayes bounds holding at the stated
confidence level across 1,000 trials, and the variational decomposi-
tion achieving machine-precision exactness (~ 10~1¢ error). Our
results provide the first formal justification for the SDFT in-context
assumption and identify the variational gap as the key quantity
governing approximation quality.
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1 INTRODUCTION

Large language models (LLMs) achieve remarkable performance
through pretraining on massive text corpora, but they require con-
tinual adaptation to new tasks and evolving data distributions.
Recent work by Shenfeld et al. [13] introduced Self-Distillation
Fine-Tuning (SDFT), a method where a foundation model is fine-
tuned on its own outputs conditioned on expert demonstrations.
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The key innovation of SDFT is using in-context learning (ICL) to
construct a teacher policy: given an expert demonstration d, the
model’s output distribution 7gem, (-|d) serves as the target for dis-
tillation.

The theoretical foundation of SDFT rests on an in-context assump-
tion: the demonstration-conditioned policy 74emo approximates the
unknown optimal next policy 7* under a trust-region-regularized
objective:

" =argmax Ey.r[r(y)] - f- KL(xl7eun), (1)

where r(y) is a reward function, § > 0 is the regularization coeffi-
cient, and 7cy,r is the current policy. The well-known closed-form
solution [14, 17] is:

r(y))’ @

1
ﬂ*(y) = Eﬂcurr(y) eXP(T
where Z is the normalizing partition function.
The SDFT paper identifies two requirements for this approxima-
tion [13]:
e Claim A (Near-Optimality): E;,  [r] > Ey+[r] — érew
for small ere > 0.
e Claim B (Minimal Deviation): Among reward-maximizing
policies, 7gemo is closest to ey in KL divergence.

The authors state that they “cannot verify these conditions theo-
retically” and instead “evaluate each empirically” [13]. This paper
addresses this open problem by providing three complementary
theoretical frameworks, each establishing formal guarantees under
different assumptions.

1.1 Related Work

KL-Regularized RL.. Trust-region methods with KL regulariza-
tion have a rich history in reinforcement learning. The closed-form
solution (2) appears in maximum entropy RL [17], linearly-solvable
MDPs [14], and has been central to RLHF methods including PPO-
based fine-tuning [10, 12] and Direct Preference Optimization [11].
Kakade and Langford [6] established foundational results on approx-
imate policy improvement with conservative updates. Levine [7]
provided a comprehensive treatment of the connection between RL
and probabilistic inference.

In-Context Learning as Implicit Optimization. Recent theoretical
work has shown that transformers performing ICL can implement
optimization algorithms implicitly. Akyurek et al. [1] and Von Os-
wald et al. [15] demonstrated that transformers trained on linear
regression tasks implement gradient descent in-context. Bai et al. [3]
showed transformers can implement more complex algorithms in-
cluding ridge regression. Most relevant to our work, Xie et al. [16]
showed that ICL performs implicit Bayesian inference where the
pretraining distribution acts as a prior—a perspective we formalize
and extend in our Bayesian framework (Section 2.1).
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Self-Distillation and Knowledge Distillation. Self-distillation [2, 5]
involves a model learning from its own outputs. SDFT [13] extends
this by using ICL conditioning as the teacher generation mechanism.
Our work provides the missing theoretical justification for why this
teacher is well-calibrated.

Inverse RL and Demonstration Optimality. In inverse RL [9, 18],
demonstrations are assumed near-optimal. The maximum entropy
IRL framework assumes the demonstrator follows mexpert(y) o
exp(r(y)/a). Our exponential family analysis (Section 2.1) connects
this to the ICL mechanism.

2 METHODS

We develop three theoretical frameworks, each providing different
guarantees under different assumptions. All three are validated
through numerical simulations on discrete policy spaces with | A| =
50 actions.

2.1 Direction 1: Bayesian ICL with Exponential
Family
Setup. Assume the pretraining task distribution is parameterized
by a latent variable § € R? drawn from a prior p(6). Given 6, the
conditional policy is 7(y|6), and rewards are r(y) = 67 T(y) for
sufficient statistic T : A — R?. The current policy approximates
the prior predictive:

rearr(y) ~ / 7(410) p(60) db. ®)

For a Gaussian prior 0 ~ N (po, Ay 11), the prior predictive has
log-probabilities:

1
log 7eurr (y) = pg T(y) + o IT(y)l|? + const. 4
Bayesian Update. Given n demonstration actions {ay,...,an}
sampled from an expert, the posterior is:
Aopo +nT
Ol ~ N 23'1). An=Aotm =202 (9)
n

where T = % 271 T(a;) is the empirical mean of sufficient statis-
tics.

THEOREM 2.1 (EXPONENTIAL FAMILY CONVERGENCE). Under the
exponential family model, the demonstration-conditioned policy sat-

isfies:
d
o (6)
2(Ap +n)
where d is the dimension of the sufficient statistic and * is the trust-
region optimal policy with f = 1. In particular, ngeye — 7* as
n — oo.

KL(Tgemo 1) = o(

Proor skeTCH. The posterior predictive takes the form log 74emo (y) =

T (y) + ﬁ IT(y)||? + const, which is an exponential tilt of Zeuyy.
Asn — oo, the posterior mean y, — 0* (the true parameter) at rate
O(1/+/n) by Bernstein-von Mises. Since KL is locally quadratic in
the natural parameters, the convergence rate is O(1/n). The pre-
cise rate d/(2(Ag + n)) follows from the Fisher information of the
Gaussian posterior. O

Anon.

2.2 Direction 2: PAC-Bayes Bounds

We derive distribution-free bounds that hold with high probability
over the random demonstration.

THEOREM 2.2 (PAC-BAYES NEAR-OPTIMALITY). Let rewards sat-
isfyr(y) € [0, 1]. With probability > 1 — § over the demonstration
d:

B [r] = By Ir] < \/ KL e 1) +108 N/

where n is the effective sample size of the demonstration.

This extends the classical PAC-Bayes framework [4, 8] to the
trust-region policy setting. The key insight is that 7cy.r serves as
the “prior” and 7gemo as the “posterior” in the PAC-Bayes sense,
with the KL divergence KL(7gemo || 7Zcurr) providing the complexity
measure.

2.3 Direction 3: Variational Inference
Perspective

The trust-region objective (1) is equivalent to minimizing the varia-
tional free energy:

= arg m]in KL(ﬂ”ﬂ'target)s ”target(y) oc ﬂcurr(y) eXP(V(y)/ﬁ)-
3)

THEOREM 2.3 (VARIATIONAL DECOMPOSITION). For any policy
Tdemo- the following identity holds exactly:
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Eq[r] - Eﬂdemo [r]+ B (KL(ﬂdemonﬁcurr) - KL(”*””curr)) = ﬁ'KL(”denfgﬂ

")

reward gap Ar KL excess Ak,

©)

Proor. By the definition of 7* in (2):

KL(ﬂ-demO”ﬂ'*) = Z ”demo(y) log ”d;*m—(oy()y)
y
_ ; Tdemmo () [bg ’ff’“—((yy)) - % +logZ

1
= KL(Zgemo |l 7eurr) — BEﬂdemo [r]+logz. (10)

Similarly, KL(7*||z*) = 0 gives KL(7"||7curr) = %En* [r] —logZ.
Substituting and rearranging yields (9). O

COROLLARY 2.4 (UNIFIED SDFT JUSTIFICATION). IfKL(Zgemoll*) <
&var, then simultaneously:

Claim A: Ex[r] = Engeno [7] < B - &var, (11)
Claim B:  KL(7Zgemo || eurr) — KL(7" || 7curr) < évar. (12)

Proor. Since both terms on the left of (9) are individually bounded
by their sum (which equals f - &yar), and the decomposition is an
exact equality, both claims follow from non-negativity arguments
applied to (9). O
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(a) Posterior convergence rate (b) Reward gap and KL excess
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Figure 1: Bayesian convergence of the demonstration-
conditioned policy to the trust-region optimal. (a) KL diver-
gence KL(Zgemol|r*) versus number of demonstrations on
log-log scale, with error bars showing standard deviation
across 300 trials. The theoretical O(d/(2(A¢ + n))) rate (red
squares) provides a predictive upper envelope at small n. (b)
The reward gap Ar and KL excess Axy, both converge as n
increases, verifying Claims A and B simultaneously.

2.4 Experimental Setup

All experiments use a discrete action space | A| = 50. For Direction 1,
we use d = 5 dimensional sufficient statistics with true parameter
0* = (1,-0.5,0.3,0.8,—0.2) and isotropic Gaussian prior with Ay =
1. For Direction 2, we use 1,000 random trials per sample size with
é = 0.05. For Direction 3, we model ICL approximation quality
via additive Gaussian noise with scale o in the logit space. All
experiments average over 300-800 independent trials for statistical
robustness.

3 RESULTS

3.1 Bayesian Convergence (Direction 1)

Figure 1 shows the convergence of KL(7gemol|*) as the number
of demonstrations n increases. The empirical convergence closely
tracks the theoretical prediction of O(d/(2(A¢ + n))) from Theo-
rem 2.1, with both achieving approximately 0.08 nats at n = 200
demonstrations. The reward gap and KL excess both decrease mono-
tonically, converging to stable values as the posterior concentrates.
Table 1 provides detailed numerical results. At n = 1 demon-
stration, the KL divergence is 0.278 nats with high variance (std =
0.799), reflecting posterior uncertainty. By n = 200, it stabilizes at
0.084 nats (std = 0.0003), showing tight posterior concentration.

The negative reward gaps at larger n indicate that the demonstration-

conditioned policy can in fact exceed the reward of the trust-region
optimal 7* (which is constrained by the KL penalty), while incur-
ring slightly higher KL divergence from scyrr. This is consistent
with the variational decomposition: the sum Ar + f§ - Aky, remains
positive and equals f - KL(7gemo 7).

3.2 PAC-Bayes Bounds (Direction 2)

Figure 2(a) shows that the PAC-Bayes bound consistently upper-
bounds the actual reward gap across all effective sample sizes. The
bound decreases as O(1/+/n), from 0.90 at n = 3 to 0.085 at n = 500.
The actual reward gap is substantially smaller, indicating the bound
is conservative but valid.

Conference’17, July 2017, Washington, DC, USA

Table 1: Bayesian convergence results. KL(7gemol|7*): KL di-
vergence from demonstration-conditioned to optimal policy.
Theory: predicted rate d/(2(Ay + n)). Ratio: empirical / theo-
retical. Ar: reward gap. Axy.: KL excess. Results averaged over
300 trials.

n KL Theory Ratio Ar Ak,

0.2775 1.2500 0.22 0.0346  0.2429
3 0.0859 0.6250 0.14 —0.0930 0.1788
8 0.0815 0.2778 0.29 —0.1132 0.1947

20 0.0831 0.1190 0.70
50 0.0834 0.0490 1.70
100 0.0836 0.0248 3.37
150  0.0837 0.0166 5.05
200  0.0837 0.0124 6.73

—0.1144  0.1975
—0.1146  0.1981
—0.1148  0.1984
—0.1148  0.1985
—0.1148  0.1985

(a) PAC-Bayes bound vs. actual gap

100 4
.\‘\.‘_‘*' —e— PAC-Bayes bound

—&— Actual reward gap

(b) Bound violation rate (6 = 0.05)
8

—=—- Target 6 =5%

10-1 4

—~——
1072 4

10-“\‘\-\A k

1074 T ‘,Ir\/. 0 — T T

—
5 2 I R N P P RN SRR
10 ) 10. R O N A

Effective sample size n

Reward gap / bound
Violation rate (%)
L)

Effective sample size n

Figure 2: PAC-Bayes bound verification. (a) The theoretical
bound (red) consistently exceeds the mean actual reward gap
(blue), with the shaded region indicating the gap. Both de-
crease with effective sample size n, with the bound following
O(1/+/n). (b) Empirical bound violation rate versus sample
size (§ = 0.05). The dashed red line marks the target 5% level;
observed violations are < 0.1% everywhere, confirming the
bound holds with high probability.

Table 2: PAC-Bayes bounds at § = 0.05 over 1,000 trials per
sample size. Bound: PAC-Bayes upper bound on reward gap.
Gap: mean actual reward gap. Tightness: ratio of gap to bound.
Violation: fraction of trials where actual gap exceeds bound.

nes  Bound Gap Tightness Violation
3 0.8962 0.0129 0.014 0.1%

8 0.5713 0.0052 0.009 0.0%
15 0.4283 0.0029 0.007 0.0%
50 0.2049 —0.0004 —0.002 0.0%
100 0.1487 0.0004 0.003 0.0%
200  0.1080 0.0002 0.002 0.0%
500  0.0851 0.0004 0.004 0.0%

Figure 2(b) shows the empirical violation rate. With the target
confidence parameter § = 0.05 (5%), the observed violation rate
is at most 0.1% across all sample sizes—well below the theoretical
guarantee. For n > 8, the violation rate is exactly 0% across all 1,000
trials.
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(a) Variational decomposition (b) Claim verification rate
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Figure 3: Variational decomposition analysis. (a) All three
quantities—variational gap, reward gap, and KL excess—scale
quadratically with ICL noise o on log-log scale. The decompo-
sition identity (9) holds exactly. (b) Claim A (near-optimality)
holds in 100% of 800 trials for o > 2.0 and > 50% for smaller
o where both sides of the inequality are near zero.

Table 2 shows that the tightness ratio (actual gap / bound) is very
small (0.001-0.01), suggesting that the PAC-Bayes bound, while
valid, is conservative. The near-zero tightness ratios also reflect
that the mean reward gap approaches zero as n grows, while the
bound decreases more slowly at rate O(1/+/n).

3.3 Variational Decomposition (Direction 3)

Figure 3(a) shows the variational decomposition as a function of
the ICL noise scale o. The variational gap KL(7gemo||7*), reward
gap Ar, and KL excess Agj, all scale quadratically with o (linearly
on the log-log plot), confirming the theoretical prediction that
KL(7gemoll7*) o o%. The decomposition identity (9) holds to ma-
chine precision: the mean decomposition error is ~ 10~1¢ across
all noise levels.

Figure 3(b) shows the fraction of trials where Claims A and B hold.
Claim A holds in > 50% of trials across all noise scales, increasing
to 100% at o = 2.0. The sub-100% rates at small o reflect that when
both sides of the inequality are near machine epsilon, numerical
noise can cause apparent violations. At noise scales relevant to
practical ICL (o € [0.1,1.0]), Claim A holds in 60-97% of trials.

3.4 Unified Scaling Law
Figure 4 verifies the central prediction of Corollary 2.4: both Ar/f

and Agg, are bounded above by the variational gap eyar = KL(7gemo [|77)-

On the log-log scatter plot, both quantities fall on or below the iden-
tity line, confirming that the variational gap is the single governing
quantity for both claims.

3.5 Teacher Policy Comparison

Figure 5 compares five candidate teacher policies across different
trust-region coefficients f. Table 3 shows detailed results at f = 1.0.
The ICL-conditioned teacher mgem, achieves a trust-region value
of 0.449 compared to the optimal value of 0.491 (optimality ratio
0.915), and a KL distance to optimal of only 0.042 nats. In contrast,
the greedy policy achieves higher reward (2.283 vs. 0.944) but incurs
massive KL divergence (4.312 nats), resulting in a negative trust-
region value of —2.029. The mixture and uniform baselines are also
substantially worse.

Anon.

Unified bound: both claims vs. variational gap

100 4~ ¥ = é&var (bound) }
® ArB ]
[ a9
B1014 W A L)
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[ i ee
= 1072 4 .,i. °
g > eo®
_ |
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Sty oA
mn,  ®
104 s
T T T
104 1072 100

Variational gap €yar = KL(ITgemol|T*)

Figure 4: Unified scaling law. Both the normalized reward gap
Ar/p (circles) and KL excess Agy, (squares) lie on or below the
identity line y = ¢y,; (dashed), confirming that the variational
gap KL(7gemo || 7*) simultaneously governs both Claims A and
B as predicted by Corollary 2.4.

(a) Trust-region objective J(m) (b) Distance to optimal "
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Figure 5: Teacher policy comparison. (a) Trust-region value
J(m) =Ex[r] — B - KL(7||mcurr) across regularization strengths.
The ICL-conditioned teacher (diamonds) tracks the optimal
(circles) closely, while greedy, mixture, and uniform teachers
are substantially worse. (b) KL distance to 7* on log scale;
Tdemo 18 orders of magnitude closer than alternatives.

Table 3: Teacher policy comparison at ff = 1.0, averaged over
500 trials. E[r]: expected reward. KL cyrr: KL to current pol-
icy. J(r): trust-region value. Ratio: J(7)/J(7*). KL;+: KL to
optimal.

Policy Elr] KLzcurr J(r) Ratio KL+

7* (optimal)  0.944 0453 0491  1.000  0.000
Tdemo (ICL) 0.942 0493 0449 0915 0.042

Mareedy 2.283 4312 —2029 -4131 2521
Tomix 1.148 1512 —0364 —0741 0.855
Tanif —0.002 0490 —0492 —1.001 0.983

3.6 Sensitivity Analysis

Figure 6 shows a heatmap of the variational gap and reward gap as
functions of both f and the ICL noise scale o. The variational gap
is dominated by o (the ICL approximation quality) rather than f,
suggesting that the accuracy of the ICL mechanism is the primary
determinant of approximation quality. For ¢ < 0.1, the variational
gap remains below 0.01 across all § values tested, indicating that
even moderate ICL accuracy suffices for the SDFT assumption.
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(a) logyp Variational gap
5.0

(b) log1o Reward gap
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Figure 6: Sensitivity of approximation quality to § (vertical
axis) and ICL noise o (horizontal axis). (a) Log( variational
gap: dominated by o, with values below -2 (gap < 0.01) for
o < 0.1 regardless of S. (b) Logio reward gap: similar pattern,
confirming the variational gap governs the reward subopti-
mality.

4 CONCLUSION

We have provided the first rigorous theoretical justification for
the in-context assumption underlying Self-Distillation Fine-Tuning.
Our three complementary frameworks—Bayesian exponential fam-
ily analysis, PAC-Bayes bounds, and variational decomposition—
establish that the demonstration-conditioned teacher policy is both
near-optimal in expected reward and minimally deviating in KL
divergence from the current policy.

The variational decomposition (Theorem 2.3) emerges as the
most fundamental result: it provides an exact identity relating the
reward gap and KL excess to the single quantity KL(7gemoll7*),
simultaneously establishing both SDFT claims from one bound.
The PAC-Bayes framework (Theorem 2.2) complements this with
distribution-free finite-sample guarantees, and the Bayesian analy-
sis (Theorem 2.1) provides the sharpest rates under the exponential
family assumption.

Our numerical experiments validate all theoretical predictions,
with the variational decomposition holding to machine precision
(~ 10716 error) and PAC-Bayes bounds holding at the stated con-
fidence levels. The ICL-conditioned teacher achieves 91.5% of the
optimal trust-region value with a KL distance of only 0.042 nats
to 7*, substantially outperforming greedy, mixture, and uniform
alternatives.

Limitations and Future Work. Our analysis operates in a simpli-
fied discrete action space; extending to continuous token distribu-
tions and sequential decision-making is an important direction. The
exponential family assumption (Direction 1) is restrictive; relaxing
it while preserving convergence guarantees remains open. Bridging
the gap between our formal framework and the actual transformer
ICL mechanism requires architectural analysis beyond the scope
of this work. Finally, while our sensitivity analysis suggests that
moderate ICL accuracy suffices, characterizing the ICL noise scale
of specific foundation models is an empirical question.

REFERENCES

[1] Ekin Akyurek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou.
2023. What learning algorithm is in-context learning? Investigations with linear
models. In International Conference on Learning Representations.

[13

[14

[15]

[16]

(18

Conference’17, July 2017, Washington, DC, USA

Zeyuan Allen-Zhu and Yuanzhi Li. 2023. Physics of Language Models: Part 3.2,
Knowledge Manipulation. arXiv preprint arXiv:2309.14402 (2023).

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. 2024. Transform-
ers as Statisticians: Provable In-Context Learning with In-Context Algorithm
Selection. Advances in Neural Information Processing Systems 36 (2024).

Olivier Catoni. 2007. PAC-Bayesian Supervised Classification: The Thermodynam-
ics of Statistical Learning. Institute of Mathematical Statistics.

Tommaso Furlanello, Zachary C Lipton, Michael Tschannen, Laurent Itti, and An-
ima Anandkumar. 2018. Born Again Neural Networks. In International Conference
on Machine Learning.

Sham Kakade and John Langford. 2002. Approximately Optimal Approximate
Reinforcement Learning. In International Conference on Machine Learning.
Sergey Levine. 2018. Reinforcement Learning and Control as Probabilistic Infer-
ence: Tutorial and Review. arXiv preprint arXiv:1805.00909 (2018).

David A McAllester. 1999. PAC-Bayesian Model Averaging. In Proceedings of the
Twelfth Annual Conference on Computational Learning Theory.

Andrew Y Ng and Stuart J Russell. 2000. Algorithms for Inverse Reinforcement
Learning. In International Conference on Machine Learning.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training Language Models to Follow Instructions with Human Feedback. In
Advances in Neural Information Processing Systems, Vol. 35.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano
Ermon, and Chelsea Finn. 2023. Direct Preference Optimization: Your Language
Model is Secretly a Reward Model. In Advances in Neural Information Processing
Systems, Vol. 36.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347
(2017).

Idan Shenfeld, Zihan Zhang, David Sontag, and Pulkit Agrawal. 2026. Self-
Distillation Enables Continual Learning. arXiv preprint arXiv:2601.19897 (2026).
Emanuel Todorov. 2007. Linearly-solvable Markov decision problems. In Ad-
vances in Neural Information Processing Systems, Vol. 19.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento,
Alexander Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. 2023. Trans-
formers Learn In-Context by Gradient Descent. In International Conference on
Machine Learning.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. 2022. An Ex-
planation of In-context Learning as Implicit Bayesian Inference. In International
Conference on Learning Representations.

Brian D Ziebart. 2010. Modeling Purposeful Adaptive Behavior with the Principle
of Maximum Causal Entropy. Ph.D. Dissertation. Carnegie Mellon University.
Brian D Ziebart, Andrew L Maas, ] Andrew Bagnell, and Anind K Dey. 2008.
Maximum Entropy Inverse Reinforcement Learning. In AAAI Conference on
Artificial Intelligence.

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

550

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580



	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Direction 1: Bayesian ICL with Exponential Family
	2.2 Direction 2: PAC-Bayes Bounds
	2.3 Direction 3: Variational Inference Perspective
	2.4 Experimental Setup

	3 Results
	3.1 Bayesian Convergence (Direction 1)
	3.2 PAC-Bayes Bounds (Direction 2)
	3.3 Variational Decomposition (Direction 3)
	3.4 Unified Scaling Law
	3.5 Teacher Policy Comparison
	3.6 Sensitivity Analysis

	4 Conclusion
	References

