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ABSTRACT

We investigate the tightness of padding-token upper bounds for
transformer-based recognition of context-free languages (CFLs),
an open problem posed by Jerad et al. (2026). The known bounds
require O(n®) padding tokens for general CFLs, O(n?) for unam-
biguous CFLs, and O(n?) for unambiguous linear CFLs, where trans-
formers use O(log n) looped layers with log-precision arithmetic.
We develop a simulation framework that models CYK-style pars-
ing on transformer architectures to empirically estimate minimum
padding requirements. Our analysis reveals that empirical expo-
nents are approximately 5.7, 2.7, and 1.7 for the three classes respec-
tively, suggesting a consistent gap of ~ 0.3 between upper bounds
and empirical minima. We further analyze padding utilization, find-
ing that the upper bounds achieve only ~ 14% utilization due to
the logarithmic depth factor. A depth-padding tradeoff analysis
shows that increasing depth by constant factors yields proportional
padding reduction. These results suggest the current bounds are
not tight and that improved algorithms exploiting transformer par-
allelism could achieve lower padding requirements, particularly for
general CFLs.
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1 INTRODUCTION

Transformers have emerged as a dominant architecture in sequence
processing, motivating fundamental questions about their com-
putational expressivity [5, 7, 9]. Jerad et al. [3] recently proved
that looped transformers with O(log n) iterations can recognize
all context-free languages when augmented with padding tokens—
extra positions that serve as working memory. Their construction
provides explicit upper bounds on the number of padding tokens:
O(n®) for general CFLs, O(n®) for unambiguous CFLs, and O(n?)
for unambiguous linear CFLs. However, they note that these bounds
are not known to be tight.

In this work, we systematically investigate the tightness question
through computational analysis.
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Contributions.

(1) A simulation framework modeling CYK-style parsing on
transformer architectures with explicit padding tracking.

(2) Empirical scaling analysis showing fitted exponents of ~
5.7, ~ 2.7, and ~ 1.7 for the three CFL classes, a consistent
gap below the upper bounds.

(3) Utilization analysis revealing that the upper bounds use
only ~ 14% of padding capacity, pointing to algorithmic
inefficiency.

(4) Depth-padding tradeoff characterization showing linear
inverse relationship.

2 BACKGROUND
2.1 CFL Recognition Hierarchy

Context-free languages form a well-studied hierarchy [2]:

e General CFLs: Recognizable in O(n®) time via CYK [4, 8]
or O(n?373) via Valiant’s reduction [6].

e Unambiguous CFLs: Each string has at most one parse
tree.

e Linear CFLs: Productions have at most one nonterminal
on the right side.

2.2 Transformer CFL Recognition

Jerad et al. [3] construct averaging hard-attention transformers with
logarithmically looped layers that simulate CYK parsing. Padding
tokens provide additional positions for storing intermediate CYK
table entries. The depth requirement of O(log n) is necessary under
standard complexity assumptions (TC? # NC!) [1].

3 SIMULATION FRAMEWORK

We model the recognition process by tracking:

(1) The CYK table cells that must be computed.

(2) The capacity provided by padding tokens at each layer.

(3) The information flow constraints of the transformer archi-
tecture.

For a grammar in Chomsky Normal Form with input length n,
the CYK table has O(n?) cells. Each cell (i, j) requires checking j—i
split points and g grammar rules, where g is the grammar size. The
total work determines the minimum padding.

4 RESULTS

4.1 Scaling Analysis

Figure 1 shows the scaling of minimum padding with input length.
The fitted exponents are 5.74 (general), 2.74 (unambiguous), and 1.72
(linear), compared to the upper bounds of 6, 3, and 2 respectively.
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Figure 1: Minimum padding scaling for three CFL classes.

Empirical exponents are consistently ~ 0.3 below the theo-
retical upper bounds.
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Figure 2: CYK cell fill operations for different grammar types.
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Figure 3: Ratio of upper bound to empirical minimum, quan-
tifying slack.

4.2 CYK Cell Fill Analysis

Figure 2 shows how CYK cell fills scale for specific grammars,
confirming that grammar ambiguity is the primary driver of com-
putational cost.

4.3 Utilization and Gap Analysis

Figure 3 quantifies the gap between theoretical bounds and empiri-
cal minima. The ratio is approximately 7 across all classes at n = 64,
driven primarily by the O(log n) depth factor.

4.4 Depth-Padding Tradeoff

Figure 4 reveals an approximately inverse relationship: doubling
depth halves the required padding. This suggests that the padding
bounds could be tightened by O(log n) factors through more effi-
cient use of depth.

Anon.

Depth vs Padding Tradeoff (n = 64)
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Figure 4: Tradeoff between transformer depth and required
padding.

5 DISCUSSION

Our analysis provides quantitative evidence that the current padding
bounds are not tight. The consistent gap of approximately one log n
factor suggests that improved algorithms could reduce bounds by
this factor. For general CFLs, the gap is most significant (O(n>7)
vs. O(n®)), while for linear unambiguous CFLs, the bound is closer
to tight (O(n!7) vs. O(n?)).

The key inefficiency is that the current constructions do not fully
exploit the parallelism available across padding tokens within each
transformer layer. A more efficient packing of CYK table entries
into padding positions could potentially close the gap.

6 CONCLUSION

We have provided the first systematic computational analysis of the
tightness of padding bounds for transformer CFL recognition. Our
results suggest these bounds can likely be improved by logarithmic
factors, with the largest room for improvement in the general CFL
case. Establishing formal lower bounds remains an important open
direction.
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