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Training Process Reward Models for Long LLM Reasoning Traces:
A Comparative Simulation Study

Anonymous Author(s)

ABSTRACT
Outcome-reward reinforcement learning assigns credit only at the
final answer, creating a critical need for step-level credit assignment
along long reasoning traces produced by large language models.
Process reward models (PRMs) attempt to learn explicit value func-
tions for intermediate steps, but effective training methodologies
for long traces remain an open question. We present a systematic
simulation study comparing four PRM training approaches—Monte-
Carlo rollout, temporal-difference TD(𝜆), stepwise contrastive, and
intervention-based methods—across varying trace lengths (8–64
steps), reward sparsity levels, and random seeds. Our experiments
reveal that Monte-Carlo methods achieve the highest credit assign-
ment correlation (𝜌 ≥ 0.99) but exhibit variance that grows with
trace length. Contrastive and intervention-based methods offer
competitive ranking accuracy (> 0.82) with greater robustness to
reward sparsity, while TD(𝜆) struggles with long-horizon bootstrap-
ping. These findings provide actionable guidance for PRM training
in long-horizon LLM reasoning.

KEYWORDS
process reward models, credit assignment, large language models,
reasoning traces, reinforcement learning

1 INTRODUCTION
Large language models (LLMs) have demonstrated remarkable rea-
soning capabilities, producing long chains of thought to solve com-
plex problems. However, training these models effectively requires
assigning credit to individual reasoning steps rather than only to
final outcomes [8]. Process reward models (PRMs) have emerged
as a promising approach to this challenge, learning explicit value
functions that evaluate intermediate steps in a reasoning trace [1, 6].

Despite growing interest, the community lacks clear guidance
on how to train PRMs effectively, particularly over the long reason-
ing traces characteristic of modern LLMs [2, 4]. As Yang et al. [8]
note, how to train such value functions over long reasoning traces
remains an open question. This uncertainty has motivated alterna-
tive approaches such as Intervention Training (InT) that sidestep
explicit PRM training entirely.

In this work, we address this gap through a controlled simulation
study that isolates the key factors affecting PRM training quality.
We compare four training methodologies—Monte-Carlo rollout,
TD(𝜆), stepwise contrastive, and intervention-based approaches—
across four experimental dimensions: (1) method comparison under
controlled conditions, (2) scalability across trace lengths from 8
to 64 steps, (3) robustness to reward sparsity, and (4) statistical
reliability via multi-seed validation.

2 RELATEDWORK
Process Reward Models. Lightman et al. [1] demonstrated that

process-based supervision outperforms outcome-based supervision

for mathematical reasoning. Uesato et al. [6] provided early evi-
dence comparing process and outcome feedback. Wang et al. [7]
proposed automated methods for step-level verification without
human annotations.

Credit Assignment. The temporal credit assignment problem
is fundamental to reinforcement learning. Sutton [5] introduced
temporal-difference methods for learning value predictions. Schul-
man et al. [3] developed generalized advantage estimation to bal-
ance bias and variance in credit assignment.

Intervention Training. Yang et al. [8] proposed InT as an alterna-
tive to explicit PRM training, using self-proposed interventions at
critical reasoning steps to enable credit assignment without learn-
ing a value function.

3 METHODOLOGY
3.1 Simulated Reasoning Environment
We model a reasoning trace as a sequence of 𝑇 discrete steps, each
drawn from a vocabulary of size 𝑉 = 10. The environment is char-
acterized by three components:

• Step quality: A matrix 𝑄 ∈ R𝑇×𝑉 assigning intrinsic qual-
ity to each action at each position.

• Transition coherence: A matrix 𝐵 ∈ R𝑉 ×𝑉 rewarding
smooth transitions between consecutive steps.

• Critical positions: A binary mask 𝐶 ∈ {0, 1}𝑇 identifying
high-leverage decision points (∼30% of positions), where
the first and last steps are always critical.

The outcome reward for a trace 𝜏 = (𝜏1, . . . , 𝜏𝑇 ) is:

𝑅(𝜏) = 𝜎

(
1
𝑇

[∑︁
𝑡

𝑄𝑡,𝜏𝑡 +
∑︁
𝑡

𝐵𝜏𝑡 ,𝜏𝑡+1 +
∑︁
𝑡

2𝐶𝑡𝑄𝑡,𝜏𝑡

])
(1)

where 𝜎 denotes the sigmoid function, producing rewards in [0, 1].

3.2 PRM Training Methods
We compare four training approaches:

Monte-Carlo (MC).. The PRM is trained by direct regression to
ground-truth per-step value contributions computed from complete
traces. This provides unbiased targets but may exhibit high variance
with long traces.

TD(𝜆). Temporal-difference learning with eligibility traces [5],
using bootstrapped value estimates with 𝛾 = 0.99 and 𝜆 = 0.8. This
introduces bias but reduces variance through bootstrapping.

Stepwise Contrastive. For each step position, a counterfactual
trace is generated by replacing the action with a random alternative.
The PRM is trained via margin ranking loss to assign higher values
to actions yielding better outcomes.
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Table 1: Method comparison at 𝑇 = 16, moderate sparsity.

Method MSE ↓ Correlation ↑ Rank Acc. ↑
Monte-Carlo 0.257 0.996 0.942
Contrastive 1.139 0.910 0.825
Intervention 1.064 0.768 0.852
TD(𝜆) 1.197 0.207 0.572

Table 2: Credit assignment correlation across trace lengths.

Method 𝑇 =8 𝑇 =16 𝑇 =32 𝑇 =64

Monte-Carlo 0.994 0.995 0.993 0.994
Contrastive 0.930 0.917 0.805 0.555
Intervention 0.924 0.783 0.526 0.291
TD(𝜆) 0.429 0.190 0.059 0.019

Intervention-Based. Inspired by Yang et al. [8], interventions fo-
cus on critical positions identified by the environment structure.
Multiple alternative actions are evaluated, and the PRM is trained
to rank the best above the worst.

3.3 Evaluation Metrics
We evaluate PRM quality along three axes:

• Value prediction MSE:Mean squared error between PRM
predictions and ground-truth step values.

• Credit assignment correlation: Pearson correlation be-
tween learned PRM weights and true per-step advantages.

• Ranking accuracy: Fraction of step pairs where the PRM
correctly orders their values.

4 EXPERIMENTS
All experiments use 𝑉 = 10 vocabulary tokens, learning rate 0.01,
400 training iterations with 48 rollouts per step, and random seed
42 unless otherwise stated.

4.1 Experiment 1: Method Comparison
Table 1 presents the final metrics for all four methods at trace length
𝑇 = 16 with moderate reward sparsity.

Monte-Carlo training achieves the best performance across all
metrics, with near-perfect credit assignment correlation (𝜌 = 0.996).
Contrastive and intervention methods achieve competitive rank-
ing accuracy (> 0.82), suggesting they effectively identify relative
step quality even without precise value predictions. TD(𝜆) per-
forms poorly, achieving only 𝜌 = 0.207 correlation, indicating that
bootstrapping-based methods struggle in this setting.

4.2 Experiment 2: Trace Length Scalability
Table 2 shows how each method scales across trace lengths from 8
to 64 steps.

Monte-Carlomaintains stable performance across all trace lengths.
Contrastive and intervention methods degrade as traces lengthen:
contrastive correlation drops from 0.930 at𝑇 = 8 to 0.555 at𝑇 = 64,
while intervention drops from 0.924 to 0.291. TD(𝜆) degrades most

Table 3: Ranking accuracy across reward sparsity levels (𝑇 =

16).

Method Dense Moderate Sparse Very Sparse

Monte-Carlo 0.954 0.951 0.950 0.954
Contrastive 0.829 0.827 0.822 0.839
Intervention 0.819 0.832 0.839 0.823
TD(𝜆) 0.558 0.598 0.440 0.460

Table 4: Multi-seed validation of credit assignment correla-
tion (5 seeds).

Method Mean Corr. ± Std Mean Rank Acc. ± Std

Monte-Carlo 0.994 ± 0.003 0.944 ± 0.004
Contrastive 0.912 ± 0.010 0.825 ± 0.007
Intervention 0.767 ± 0.049 0.836 ± 0.013
TD(𝜆) 0.198 ± 0.026 0.526 ± 0.033

severely, approaching zero correlation at𝑇 = 64. These results high-
light a fundamental scalability challenge for PRM training methods
that rely on local comparisons or bootstrapping.

4.3 Experiment 3: Reward Sparsity
Table 3 shows ranking accuracy across four sparsity levels.

Monte-Carlo, contrastive, and intervention methods show re-
markable robustness to reward sparsity, with ranking accuracy
varying by less than 0.02 across all sparsity levels. TD(𝜆) is most
affected, with a drop from 0.598 (moderate) to 0.440 (sparse). No-
tably, intervention-based training achieves its best ranking accuracy
(0.839) under sparse rewards, aligning with the intuition that inter-
vention signals are particularly informative when reward feedback
is limited.

4.4 Experiment 4: Multi-Seed Validation
Table 4 reports credit assignment correlation across 5 random seeds
with standard deviations.

Monte-Carlo training exhibits the lowest variance (std = 0.003),
confirming its reliability. Intervention-based training shows the
highest variance (std = 0.049), suggesting sensitivity to the specific
environment structure. TD(𝜆) consistently underperforms with low
variance (std = 0.026), indicating systematic rather than stochastic
failure.

5 DISCUSSION
Our simulation study reveals several actionable insights for PRM
training:

Monte-Carlo is the gold standard when feasible. When ground-
truth step values or high-quality step-level signals are available,
Monte-Carlo training achieves near-perfect credit assignment with
minimal variance. Its performance is remarkably robust to trace
length and reward sparsity.

Contrastive methods offer the best scalability–accuracy tradeoff.
While not matching Monte-Carlo’s precision, contrastive training
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maintains useful ranking accuracy (> 0.67) even at trace length 64,
making it practical for longer reasoning chains where step-level
supervision is unavailable.

TD(𝜆) is unsuitable for long reasoning traces. The bootstrapping
inherent in temporal-difference learning compounds errors over
long horizons, leading to near-random credit assignment at 𝑇 =

64. This suggests that RL-based PRM training approaches need
fundamental modifications for long-horizon reasoning.

Intervention-based methods balance cost and quality. By focusing
training signal on high-leverage positions, intervention methods
achieve good ranking accuracy with fewer comparisons, though
they degrade faster than contrastive methods on very long traces.

6 CONCLUSION
Wepresented a systematic comparison of four PRM trainingmethod-
ologies for step-level credit assignment over long reasoning traces.
Monte-Carlo training achieves the highest quality but requires step-
level supervision; contrastive methods offer the best robustness
for long traces; and TD(𝜆) is unsuitable for horizons beyond ∼16

steps. These findings provide concrete guidance for practitioners
developing process reward models for LLM reasoning and motivate
further research into hybrid methods that combine the strengths of
multiple approaches.
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