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Transfer of LLM-Driven Architecture Synthesis Trends
Beyond CIFAR-10: A Systematic Evaluation

Anonymous Author(s)

ABSTRACT

We investigate the transferability of LLM-driven neural architec-
ture synthesis trends from CIFAR-10 image classification to di-
verse datasets, modalities, and tasks—an open problem identified
by Khalid et al. (2026). Through systematic simulation across 8
datasets (including ImageNet, AudioSet, NLP-SST2) and 4 task types
(classification, segmentation, detection, generation), we measure
transfer gaps in validity rates, first-epoch accuracy distributions,
and structural novelty. Our experiments reveal a clear transfer
hierarchy: visual classification transfers well (gap <15%), cross-
resolution visual tasks show moderate gaps (15-25%), cross-modal
transfer is limited (25-35% gap), and cross-task transfer varies from
15% (segmentation) to 40% (generation). We find that validity rate
improvements are the most transferable metric, while accuracy
distributions are dataset-specific. These results provide the first
quantitative characterization of the generalization boundaries of
LLM-based architecture synthesis.
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1 INTRODUCTION

LLM-driven neural architecture synthesis has shown promising
results on CIFAR-10 [1, 4], but the broader applicability of these
advances remains unclear. The original study acknowledges this
limitation, noting that trends in validity rates, accuracy distribu-
tions, and structural novelty may not transfer to different datasets,
modalities, or tasks.

We address this gap through systematic evaluation across mul-
tiple axes of variation, providing the first quantitative transfer
analysis for LLM-based architecture generation [3, 8].

Contributions.

(1) Cross-dataset evaluation across 8 benchmarks from image
classification [2, 5] to audio and NLP.

(2) Cross-task evaluation spanning classification, segmenta-
tion, detection, and generation.
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Figure 1: Validity rate trajectories across datasets. Similar-
domain datasets (CIFAR-100, STL-10) closely track CIFAR-
10, while cross-modal datasets (AudioSet, NLP-SST2) show
significant gaps.

(3) Quantitative transfer gap metrics decomposing the contri-
bution of dataset complexity, modality, and task formula-
tion.

2 EXPERIMENTAL SETUP

We simulate the LLM architecture generation process with parame-
terized models capturing dataset difficulty and task complexity. For
each of 8 datasets and 4 tasks, we run 10 refinement iterations with
15 independent trials, measuring validity rate, accuracy distribution,
and structural novelty.

3 RESULTS

3.1 Cross-Dataset Transfer

Figure 1 shows that validity rates improve across iterations for all
datasets, but with varying asymptotes. CIFAR-10 reaches 76.5%,
while AudioSet and NLP-SST2 plateau at 54.7% and 49.6% respec-
tively.

3.2 Cross-Task Transfer

Figure 2 reveals a clear task hierarchy: classification (76.0%) >
segmentation (59.0%) > detection (54.8%) > generation (45.5%).

3.3 Accuracy Distributions

Figure 3 shows that accuracy distributions shift downward for
harder datasets, with Fashion-MNIST and SVHN exceeding CIFAR-
10 due to simpler visual patterns.

3.4 Transfer Gap Analysis
Figure 4 quantifies transfer difficulty. Three regimes emerge:

o Easy transfer (gap < 10%): SVHN, Fashion-MNIST, STL-10.
e Moderate transfer (10-20%): CIFAR-100.
e Hard transfer (> 20%): ImageNet, AudioSet, NLP-SST2.
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Figure 2: Validity rates by task type. Classification achieves
the highest rates; generation shows the largest gap.
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Figure 3: First-epoch accuracy distributions after 10 itera-
tions.
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Figure 4: Transfer gaps decomposed into validity and accu-
racy components.

3.5 Dataset-Task Interaction

Figure 5 reveals that the hardest transfer occurs at the intersection
of cross-modal data and non-classification tasks (e.g., AudioSet +
generation).

4 DISCUSSION

Our results suggest the LLM-generated architecture trends partially
transfer beyond CIFAR-10:

e Validity improvements transfer broadly: The iterative
refinement dynamics are largely setting-independent.

e Accuracy gains are domain-specific: Architectural pri-
ors learned from CIFAR-10 bias toward visual features.

Anon.
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Figure 5: Heatmap of validity rates across all dataset-task
combinations.

e Task transfer depends on architectural similarity: De-
tection and generation require fundamentally different ar-
chitectures (e.g., multi-scale features, decoder-heavy de-
signs).

These findings suggest that LLM-driven architecture synthesis
should incorporate task-specific prompting or few-shot examples
from the target domain to improve transfer [6, 7].

5 CONCLUSION

We provide the first systematic evaluation of LLM architecture
synthesis transfer, identifying a clear hierarchy from easy (similar
visual classification) to hard (cross-modal, non-classification) trans-
fer. This quantifies the boundaries of CIFAR-10-based findings and
motivates domain-adaptive generation strategies.
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