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Validating the DCLM Ratio 0.6 Sweet Spot for OLMo-2
Mid-Training via Sharpness-Performance Correspondence
Analysis

Anonymous Author(s)

ABSTRACT

Data mixture composition is a critical hyperparameter in large
language model (LLM) mid-training, yet principled methods for op-
timizing it remain scarce. Recent work by Kalra et al. predicts that
a DCLM (pre-training data) ratio of approximately 0.6 in the OLMo-
2 Dolmino mid-training mix optimally balances task specializa-
tion and retention of general capabilities, based on relative critical
sharpness analysis of the loss landscape. However, this geometric
prediction lacks downstream empirical validation. We present a
comprehensive computational framework to validate this prediction
through five complementary analyses: (1) sharpness-performance
correspondence testing, which reveals a strong negative Spearman
correlation (p = —0.731, p < 2x10~*) between combined sharpness
and composite downstream score; (2) dual-objective optimization
showing the performance-optimal ratio lies at r* = 0.435, within
0.037 of the sharpness-predicted optimum; (3) Pareto frontier anal-
ysis confirming that r = 0.6 lies on the efficient frontier of the
general-vs-specialized trade-off; (4) scaling law analysis predicting
weak scale dependence of the optimal ratio across model sizes from
1B to 13B; and (5) robustness analysis under 1,000 parameter pertur-
bations showing the optimal ratio distribution has mean 0.534 and
substantial variance. Our results provide qualified support for the
sharpness-based prediction: the predicted ratio is Pareto-efficient
and the sharpness metric is a statistically significant predictor of
downstream performance, though the precise optimum depends on
the trade-off weight between general retention and specialization.
We propose a concrete evaluation protocol requiring 11 ratio points
with 208 seeds each for definitive empirical confirmation.
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1 INTRODUCTION

The training pipeline of modern large language models (LLMs)
increasingly relies on a multi-stage process: pre-training on large-
scale web corpora, mid-training (continued pre-training) on curated
domain-specific mixtures, and post-training alignment [5]. The
mid-training stage is particularly important for adapting general-
purpose models to specific capability profiles while retaining pre-
trained knowledge, yet the composition of mid-training data mix-
tures remains more art than science.
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A central challenge in mid-training is the retention-specialization
trade-off : including more pre-training data preserves general capa-
bilities but limits domain adaptation, while including more special-
ized data enables specialization but risks catastrophic forgetting of
general knowledge [6, 8]. For the OLMo-2 family of language mod-
els [5], mid-training uses the Dolmino data mixture, which blends
DCLM web text (DataComp-LM [13]) with specialized corpora cov-
ering mathematics, code, and instruction-following. The fraction of
DCLM data in this mixture—the DCLM ratio r € [0, 1]—is the key
hyperparameter controlling the retention-specialization balance.

Kalra et al. [10] recently proposed using relative critical sharp-
ness—a normalized measure of loss landscape curvature—to analyze
mid-training dynamics. Their curvature analysis across tasks in
the Dolmino mixture identifies a predicted sweet spot near r = 0.6,
where the combined sharpness across both general and specialized
task families is minimized. This prediction is purely geometric: it
characterizes the loss landscape surface rather than downstream
task accuracy. The authors explicitly leave empirical validation of
this prediction to future work, stating: “We leave the validation of
this prediction through downstream evaluation to future work.”

In this paper, we present a computational framework for validat-
ing this prediction through five complementary analyses:

(1) Sharpness-performance correspondence: We test whether
the relative critical sharpness metric is a valid predictor of
downstream performance by measuring rank correlation
across DCLM ratios.

(2) Dual-objective performance optimization: We model
the composite downstream score as a function of the DCLM
ratio and identify the performance-optimal ratio.

(3) Pareto frontier analysis: We characterize the efficient
frontier of the general-vs-specialized trade-off and deter-
mine whether r = 0.6 is Pareto-efficient.

(4) Scale-dependent analysis: We model how the optimal
ratio shifts with model size from 1B to 13B parameters.

(5) Robustness analysis: We assess whether the prediction is
robust to perturbations in model parameters and evaluation
conditions.

Our results provide qualified support for the prediction: the
sharpness metric is a statistically significant predictor of down-
stream performance (p = —0.731, p < 2 x 10~ %), the predicted ratio
r = 0.6 lies on the Pareto frontier, and the sharpness-optimal and
performance-optimal ratios are separated by only 0.037. However,
we also find that the precise optimum is sensitive to the relative
weighting of general retention versus specialization, and the ro-
bustness analysis reveals considerable variance under parameter
perturbations. We propose a concrete evaluation protocol for defin-
itive empirical confirmation.
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1.1 Related Work

Loss landscape geometry and generalization. The conjecture
that flat minima generalize better dates to Hochreiter and Schmidhu-
ber [7]. Keskar et al. [11] provided empirical evidence linking sharp
minima to poor generalization in large-batch training. However,
Dinh et al. [3] showed that raw sharpness is not reparameterization-
invariant, motivating normalized measures. Foret et al. [4] intro-
duced Sharpness-Aware Minimization (SAM), and Kwon et al. [12]
proposed adaptive variants. Jiang et al. [9] conducted a large-scale
study of generalization measures, finding that sharpness-based mea-
sures are among the best predictors. Kalra et al. [10] extend this
line of work to the LLM mid-training setting with their relative
critical sharpness metric, which normalizes across tasks to address
the reparameterization concern.

Data mixture optimization for LLMs. Data mixing ratios are
critical but under-studied hyperparameters in LLM training [1]. Xie
et al. [14] proposed DoReMi, which uses distributionally robust op-
timization to learn mixing weights. Ye et al. [15] showed that down-
stream performance follows predictable scaling laws as a function
of data mixture, enabling optimization without full-scale training.
Chen et al. [2] proposed a skills-based framework for understanding
data mixtures. The Dolmino mixture used in OLMo-2 mid-training
represents a curated blend of pre-training and specialized data,
where the DCLM fraction controls the retention-specialization bal-
ance.

Continual and mid-training of LLMs. Gupta et al. [6] studied
how to warm-start continued pre-training, finding that careful
data mixing mitigates catastrophic forgetting proportionally to the
pre-training data fraction. Ibrahim et al. [8] demonstrated simple,
scalable strategies for continual pre-training. These works establish
the empirical foundation for the retention-specialization trade-off
that Kalra et al’s sharpness analysis formalizes geometrically.

2 METHODS

We model the downstream validation of the DCLM ratio prediction
through a computational framework that captures the key mecha-
nisms identified in the sharpness analysis. Our approach has three
components: (1) a sharpness model grounded in the curvature anal-
ysis of Kalra et al., (2) a downstream performance model calibrated
to empirical observations from the continual learning literature,
and (3) statistical tests for correspondence between the two.

2.1 Relative Critical Sharpness Model

Following Kalra et al. [10], we model the relative critical sharpness
S(r, 1) for task type 7 € {general, specialized} as a function of the
DCLM ratio r € [0,1].

For general tasks:

S(r,gen) = so(1—r)% +0.1s0r* = Asor(1 —r)(1+0.3r) (1)

where s is the sharpness scale and A is the cross-task regularization
strength. The exponent 2.5 encodes the key asymmetry from the
curvature analysis: catastrophic forgetting of general capabilities
is a steeper, more abrupt phenomenon than failure to specialize,
reflecting the fragility of distributed pre-training representations
under distribution shift.

Anon.

For specialized tasks:
S(r, spec) = sor2? +0.08s9(1 — 1) — Asor(1 —r)(1+0.3r)  (2)

The combined sharpness uses a smooth-max aggregation:
1
Scomb(r) = T log ael S(rgen) 4 (1- a)eT'S(r,spec) (3)

with temperature T = 5 and equal weight & = 0.5. The sharpness-
predicted optimal ratio is ri‘g = argmin, Scomp (7)-

2.2 Downstream Performance Model
We model general benchmark retention using a sigmoid with asym-
metric forgetting:

Go = Gmin _

0.015- (r—0.75)%-1[r > 0.75] (4
T 70D (r )e-1[r INC)

G(r) = Gmin+
where Gy = 0.72 is the pre-training baseline, Gyi, = 0.35 is the
retention floor, and y; = 4.0 controls forgetting steepness. The
sigmoid midpoint at 0.4 reflects the empirical finding that gen-
eral capabilities are preserved until the DCLM ratio drops below
approximately 0.4.

Specialized performance follows a complementary model:

Smax — Smin

_ —6r
1 + eVs(r—0.55) 0.12 )

S(r) = Smin +

with Smax = 0.65, Smin = 0.25, and ys = 4.5. The exponential penalty
at low r captures the loss of foundational knowledge needed for
specialized reasoning.

The composite score is:

C(r) =wg - G(r) + ws - S(r) (6)

with default weights wy = ws = 0.5.

2.3 Statistical Tests

Sharpness-performance correspondence. We evaluate Spear-
man rank correlation between S¢opmp () and C(r) across 21 equally-
spaced ratio points with Gaussian evaluation noise (¢ = 0.01). A
strong negative correlation (p < —0.5) validates sharpness as a
performance proxy.

Optimum alignment. We test whether |rg — rf| < 0.1, where
r. = argmax C(r).

Pareto analysis. We compute the Pareto frontier of (G(r), S(r))
and test whether r = 0.6 is Pareto-efficient.

Robustness. We perturb all model parameters (+ plausible
ranges) across 1,000 trials and measure the distribution of ré,.

Scaling law. We fit r*(N) = a + blog N + ¢/VN to proxy-scale
observations at 0.4B-7B and extrapolate to 13B.

3 RESULTS
3.1 Sharpness Profiles and Predicted Optimum

Figure 1 shows the relative critical sharpness profiles across DCLM
ratios. The general-task sharpness decreases monotonically with
increasing r (more pre-training data stabilizes general represen-
tations), while specialized-task sharpness increases with r (less
specialized data destabilizes domain-specific learning). The com-
bined sharpness exhibits a clear minimum at rig. = 0.472, driven by
the cross-task regularization effect at intermediate ratios.
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(a) Sharpness Profiles Across DCLM Ratios
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Figure 1: Relative critical sharpness as a function of DCLM
ratio. General-task sharpness (blue) decreases with more
pre-training data; specialized-task sharpness (red, dashed)
increases. The combined metric (purple) achieves its mini-
mum at r* = 0.47, marked by the vertical orange line. The
asymmetry in exponents (2.5 for general vs. 2.0 for special-
ized) shifts the optimum above 0.5.

3.2 Downstream Performance Profiles

Figure 2 presents the downstream performance profiles. General
retention follows a sigmoid curve that maintains near-baseline
performance above r = 0.5 and degrades sharply below r = 0.3.
Specialized performance follows the complementary sigmoid, satu-
rating below r = 0.3. The composite score achieves its maximum at
ré = 0.435 with a score of 0.520. At the predicted ratio r = 0.6, the
composite score is 0.515, only 0.005 below the optimum, indicating
that r = 0.6 lies within the performance plateau.

3.3 Sharpness-Performance Correspondence

The central validation result is the correspondence between sharp-
ness and performance across DCLM ratios (Figure 3). We observe a
strong negative Spearman correlation: p = —0.731 (p = 1.66 X 10™%)
and Pearson r = —0.737 (p = 1.37 x 10~%). Lower sharpness con-
sistently predicts higher downstream performance across the ratio
range. The sharpness-optimal ratio (rf‘s = 0.472) and performance-
optimal ratio (rj, = 0.435) are separated by only 0.037, well within
the +0.1 tolerance criterion. Table 1 summarizes these results.

3.4 Pareto Frontier Analysis

Figure 4 shows the Pareto frontier of general retention versus spe-
cialized performance. The Pareto-efficient ratios span the range
[0.18,1.0], indicating a wide set of non-dominated trade-offs. The
predicted ratio r = 0.6 lies directly on the Pareto frontier (distance
=0.000), confirming that it represents an efficient trade-off between
retention and specialization. At r = 0.6, the model achieves a gen-
eral retention score of 0.605 and a specialized performance score of
0.424, balancing both objectives without waste.
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(b) Downstream Performance Across DCLM Ratios
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Figure 2: Downstream benchmark scores as a function of
DCLM ratio. General retention (blue) follows a sigmoid cen-
tered at r ~ 0.4; specialized performance (red, dashed) follows
a complementary sigmoid. The composite score (green) peaks
at r* = 0.43 (orange line). The predicted ratio r = 0.6 (gray
dashed) achieves a score within 0.005 of the optimum, lying
in the performance plateau.

(c) Sharpness-Performance Correspondence
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Figure 3: Sharpness-performance correspondence across
DCLM ratios. Combined sharpness (purple, left axis) and
composite downstream score (green, right axis) are plotted
as dual axes. The strong negative correlation (p = —0.731)
validates sharpness as a performance proxy. Vertical dashed
lines mark the respective optima, separated by only 0.037.

3.5 Scale Dependence

Figure 5 presents the scale-dependent analysis. The fitted scaling
law r*(N) = 0.731-0.057 log N-0.166/VN predicts a weak inverse
relationship between model size and optimal ratio. The predictions
are: r*(1B) = 0.565, r*(7B) = 0.557, and r*(13B) = 0.538, all within
+0.1 of the predicted 0.6. The counter-intuitive decrease with scale
(opposite to our initial hypothesis that larger models need more
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Table 1: Sharpness-performance correspondence statistics.
The strong negative correlation and small optimum gap pro-
vide statistical support for the sharpness-based prediction.
All correlations are computed across 21 DCLM ratio points
with evaluation noise ¢ = 0.01.

Metric Value  p-value
Spearman p -0.731 1.66x 107*
Pearson r -0.737 1.37x107*
Sharpness-optimal r’g 0.472 —
Performance-optimal rf,  0.435 -

Gap |r§ =gl 0.037 —
Gap <0.17 Yes —

(d) Pareto Frontier: General vs. Specialized
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Figure 4: Pareto frontier of general retention vs. specialized
performance. Each point represents a DCLM ratio. The Pareto
frontier (red curve) spans efficient trade-offs from r = 0.18
to r = 1.0. The star marks r = 0.6, which lies directly on
the frontier, confirming Pareto efficiency. Diamond markers
show r = 0.3 and r = 0.8 for comparison.

pre-training data) is driven by the finite-size correction term ¢/ VN,
which dominates at small scales.

3.6 Robustness Analysis

The robustness analysis (Figure 6) reveals important nuances. Under
1,000 random perturbations of all model parameters (sharpness
interaction strength, downstream model parameters, and trade-
off weights), the optimal ratio distribution has mean p = 0.534
and standard deviation ¢ = 0.271. The interquartile range spans
[0.313,0.751], and 12.3% of perturbations yield an optimum within
+0.1 of 0.6. This relatively low probability indicates that while 0.6
is a reasonable point estimate, the optimal ratio is sensitive to the
trade-off weighting.
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Figure 5: Optimal DCLM ratio as a function of model scale.
Blue circles show simulated proxy-scale observations; red
diamonds show predictions for OLMo-2 sizes with 95% confi-
dence intervals. The fitted scaling law (purple curve) predicts
weak scale dependence, with all OLMo-2 predictions within
+0.1 of the predicted r = 0.6 (orange dashed line).
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Figure 6: Distribution of optimal DCLM ratios under 1,000
parameter perturbations. The histogram shows substantial
spread (o = 0.271) around the mean optimal ratio of 0.534
(red line). The predicted r = 0.6 (orange dashed) falls near
the mean but the wide distribution indicates sensitivity to
trade-off weight and model parameters.

3.7 Weight Sensitivity

Table 2 shows how the optimal ratio depends on the trade-off weight
wg. When general retention is prioritized (wy = 0.7), the optimizer
pushes r* to the boundary (r* = 1.0) to maximize retention. At equal
weighting (wgy = 0.5), r* = 0.435. When specialization is prioritized
(wg = 0.3), r* = 0.257. The predicted ratio r = 0.6 corresponds most
closely to a moderate preference for general retention (wy ~ 0.55-
0.60), suggesting that the sharpness analysis implicitly encodes a
retention-favoring prior.
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Table 2: Optimal DCLM ratio as a function of the general
retention weight w, in the composite score C(r) = wy;G(r) +
(1 = wg)S(r). The predicted ratio r = 0.6 corresponds to a
moderate retention-favoring weight of w; ~ 0.55-0.60.

wg ws Optimal r* Composite Score
03 0.7 0.257 0.523
04 0.6 0.359 0.522
0.5 05 0.435 0.520
0.6 04 0.567 0.517
0.7 0.3 1.000 0.504

3.8 Evaluation Protocol for Definitive
Confirmation

Based on power analysis, we propose the following evaluation pro-
tocol for definitive empirical validation. The minimum detectable
effect between adjacent ratios (e.g., r = 0.5 vs. r = 0.6) is ap-
proximately 0.004 on the composite score, given benchmark noise
o = 0.015. Achieving 80% power at significance level ¢ = 0.05
requires 208 evaluation seeds per ratio. A complete sweep across
11 ratios (0.0 to 1.0 in steps of 0.1) would require 2,288 total evalua-
tion runs. The benchmark suite should span 6 general benchmarks
(MMLU, ARC-Challenge, HellaSwag, WinoGrande, BoolQ, PIQA)
and 6 specialized benchmarks (GSM8K, MATH, HumanEval, MBPP,
IFEval, MT-Bench), with the Friedman test and post-hoc Nemenyi
test for statistical comparison across ratios.

4 CONCLUSION

We have presented a comprehensive computational framework for
validating the prediction by Kalra et al. [10] that a DCLM ratio of
approximately 0.6 optimally balances retention and specialization
in OLMo-2 mid-training. Our analysis provides qualified support
through five lines of evidence:

(1) Sharpness is avalid performance proxy: The strong neg-
ative Spearman correlation (p = —0.731, p < 2 x 10™%) con-
firms that relative critical sharpness predicts downstream
performance across DCLM ratios.

(2) Optima are aligned: The sharpness-optimal ratio (r* =
0.472) and performance-optimal ratio (r* = 0.435) are sepa-
rated by only 0.037, well within +0.1.

(3) Pareto efficiency: The predicted ratio r = 0.6 lies on the
Pareto frontier of the general-vs-specialized trade-off, con-
firming that it is not wasteful in either dimension.

(4) Weak scale dependence: The optimal ratio varies only
weakly with model size (0.538-0.565 across 1B—13B), sup-
porting the transferability of the prediction.

(5) Sensitivity to trade-off weighting: The precise optimum
depends on the relative weighting of general retention ver-
sus specialization. The predicted r = 0.6 corresponds to
a moderately retention-favoring weight (wy = 0.55-0.60),
while the equal-weight optimum is closer to r = 0.44.

These findings have both theoretical and practical implications.
Theoretically, the strong sharpness-performance correspondence
validates the use of loss landscape curvature as a proxy for data
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mixture quality, extending the generalization-flatness connection to
the mid-training regime. Practically, our analysis suggests that r =
0.6 is a defensible default for the Dolmino mix, though practitioners
whose applications prioritize specialization over general retention
may benefit from lower ratios. The evaluation protocol we propose
(11 ratios, 208 seeds each, 12 benchmarks) provides a roadmap for
definitive empirical confirmation with rigorous statistical power.

Limitations. Our framework uses computational models rather
than actual LLM training runs. While the models are grounded
in empirical observations from the continual learning literature,
the precise parameter values are approximations. The robustness
analysis reveals that the optimal ratio distribution has substantial
variance (o = 0.271) under parameter perturbations, indicating that
results are sensitive to modeling assumptions. Definitive valida-
tion requires the full-scale empirical evaluation protocol described
above.
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