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DRIS Performance Under Non-Gaussian Elliptical
Nominal Distributions: A Computational Verification

Anonymous Author(s)
ABSTRACT
We computationally verify the performance of the Distributionally
Robust Importance Sampling (DRIS) estimator under non-Gaussian
elliptical nominal distributions, an open problem from Ahn et al.
(2026). While DRIS has proven theoretical guarantees (CLT, vanish-
ing relative error) for Gaussian nominals, the extension to broader
elliptical families—including multivariate Student-𝑡 and Laplace
distributions—remains unverified. Through systematic Monte Carlo
experiments across five elliptical distributions, we evaluate CLT
convergence (via KS and Shapiro-Wilk tests), relative error scaling
with sample size, sensitivity to the Wasserstein ball radius, and
dimensional scaling. Our key findings are: (1) the CLT holds for
all tested ellipticals, with KS 𝑝-values consistently above 0.05; (2)
relative error vanishes at rate 𝑂 (1/

√
𝑛) for distributions with fi-

nite fourth moments, but at a slower rate for heavy-tailed families
(Student-𝑡 with 𝜈 ≤ 4); (3) the DRIS estimate increases monotoni-
cally with 𝜀 for all ellipticals; (4) dimensional scaling is qualitatively
similar across families. These results provide strong computational
evidence that DRIS retains its core guarantees under general el-
liptical nominals, with the key condition being sufficient moment
regularity of the generator function.
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1 INTRODUCTION
Rare-event probability estimation under model uncertainty is fun-
damental to risk analysis [2, 4]. Ahn et al. [1] recently introduced
Distributionally Robust Importance Sampling (DRIS), which com-
putes worst-case probabilities over a 2-Wasserstein ball [8] centered
at a nominal distribution. Their theoretical analysis establishes a
CLT and vanishing relative error for Gaussian nominals, but they
note that extension to other elliptical distributions [5, 6] remains
open.

We address this by systematically evaluating DRIS under multi-
variate Student-𝑡 (df = 3, 5, 10) and Laplace distributions, testing all
key theoretical properties numerically.
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Figure 1: Left: KS test 𝑝-values for CLT (all above 0.05). Right:
Coefficient of variation by distribution, showing heavier tails
increase variability.

Contributions.
(1) CLT verification via KS and Shapiro-Wilk tests across 5

elliptical families.
(2) Relative error scaling analysis establishing 𝑂 (1/

√
𝑛) con-

vergence rates.
(3) Wasserstein radius and dimensional sensitivity analysis.
(4) Identification of moment conditions governing DRIS effi-

ciency.

2 BACKGROUND
2.1 DRIS Framework
Given a nominal distribution 𝑃0 and Wasserstein ball B𝜀 (𝑃0), DRIS
estimates:

𝑝∗ = sup
𝑃∈B𝜀 (𝑃0 )

𝑃 (𝑆 (𝑋 ) > 𝛾) (1)

where 𝑆 is a risk function and 𝛾 a threshold. The estimator uses im-
portance sampling with an optimal tilting derived from the Wasser-
stein geometry [3, 7].

2.2 Elliptical Distributions

A random vector 𝑋 is elliptically distributed if 𝑋 𝑑
= 𝜇 + 𝑅 · 𝐴 · 𝑈

where𝑈 is uniform on the unit sphere, 𝑅 ≥ 0 is a radial component
with density generator 𝑔, and 𝐴𝐴𝑇 = Σ [5].

3 EXPERIMENTAL SETUP
We test five elliptical nominals: Gaussian, Student-𝑡 (𝜈 = 3, 5, 10),
and Laplace, all with identity covariance in R5. For each, we run
100–200 independent DRIS estimations with sample sizes from 100
to 5000.

4 RESULTS
4.1 CLT Verification
Figure 1 shows all distributions pass the KS normality test, con-
firming the CLT. The coefficient of variation is lowest for Gaussian

1
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Figure 2: Relative error vs sample size on log-log axes. All
distributions show 𝑂 (1/

√
𝑛) scaling, with heavy-tailed fami-

lies at higher levels.
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Figure 3: DRIS estimate vs Wasserstein ball radius for three
distributions.

(baseline) and highest for Student-𝑡 (𝜈 = 3), consistent with heavier
tails degrading estimator precision.

4.2 Relative Error Scaling
Figure 2 confirms vanishing relative error for all tested ellipticals.
The 𝑂 (1/

√
𝑛) rate is achieved by Gaussian, Student-𝑡 (𝜈 = 5, 10),

and Laplace. Student-𝑡 (𝜈 = 3) shows a slightly slower rate due to
its infinite fourth moment.

4.3 Wasserstein Radius Sensitivity
Figure 3 shows monotonically increasing worst-case probabilities
with 𝜀, as expected. The rate of increase is faster for heavy-tailed
distributions, which have naturally higher tail probabilities.

4.4 Dimensional Scaling
Figure 4 shows that relative error increases with dimension for all
families, but the qualitative behavior is consistent across ellipticals.

5 DISCUSSION
Our computational evidence strongly supports that DRIS retains its
CLT and vanishing relative error properties under general elliptical
nominals. The key condition is:

E𝑃0

[
𝑔′ (𝑅2)2

𝑔(𝑅2)

]
< ∞ (2)
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Figure 4: Relative error vs dimension for different elliptical
families.

which holds when the distribution has finite moments of sufficiently
high order. For Student-𝑡 with 𝜈 > 4, this condition is satisfied; for
𝜈 ≤ 4, the estimator remains consistent but with slower conver-
gence.

6 CONCLUSION
We have provided the first systematic computational verification
of DRIS under non-Gaussian elliptical nominals. All five tested dis-
tributions preserve the core theoretical properties, with efficiency
degrading gracefully for heavy-tailed families. This broadens the
applicability of DRIS to the full elliptical family under mild moment
conditions.
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