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Asymptotic Behavior of Standard Gradient Boosting Algorithms:
A Spectral and Empirical Analysis
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ABSTRACT
The asymptotic behavior of gradient boosting algorithms used in
practice, including Explainable Boosting Machines (EBMs), remains
largely unknown despite their widespread deployment. We present
a systematic numerical investigation using spectral filter analy-
sis, convergence studies, and asymptotic normality tests. Our ex-
periments reveal that standard gradient boosting implements a
Landweber-type spectral filter closely matching kernel ridge regres-
sion, with the product 𝜂𝑇 (learning rate times boosting rounds) con-
trolling an effective regularization parameter across three regimes:
under-iterated, critically-iterated, and over-iterated. We find that
EBM-style cyclic boosting converges toward additive kernel ridge
regression, and that pointwise estimates exhibit asymptotic nor-
mality (KS test 𝑝 > 0.21 for 𝑛 ≥ 50). These findings provide the
first comprehensive empirical characterization of the large-sample
limits of practical gradient boosting algorithms and support the
feasibility of valid statistical inference for these methods.

KEYWORDS
gradient boosting, asymptotic analysis, spectral regularization, ker-
nel ridge regression, explainable boosting machines

1 INTRODUCTION
Gradient boosting is among the most successful and widely used
machine learning algorithms in practice [2, 5]. Despite extensive
practical deployment, the asymptotic behavior of standard gradient
boosting remains poorly understood. As Fang et al. [4] observe, the
large-sample limits of most gradient boosting algorithms are not
known, creating a fundamental gap between practice and theory.

While asymptotic results exist for specific modified variants—
Boulevard-regularized boosting converges to kernel ridge regres-
sion, and certain randomized schemes converge to Gaussian processes—
these do not cover the standard algorithms used in practice. This
gap is particularly consequential for Explainable BoostingMachines
(EBMs) [6, 7], where valid statistical inference requires understand-
ing the asymptotic distribution.

We address this gap through five complementary analyses: (1)
spectral filter characterization of gradient boosting iterations, (2)
identification of three asymptotic regimes controlled by 𝜂𝑇 , (3)
convergence studies comparing estimators as 𝑛 → ∞, (4) EBM-
specific analysis comparing cyclic boosting to additive kernel ridge
regression, and (5) tests of asymptotic normality for pointwise
estimates.

2 BACKGROUND
Gradient Boosting as Spectral Filtering. For 𝐿2-loss gradient boost-

ing with a kernel base learner, the iterates at round𝑇 with learning
rate 𝜂 apply the spectral filter 𝜙𝑇 (𝜆) = 1 − (1 − 𝜂𝜆)𝑇 to each eigen-
value 𝜆 of the empirical kernel operator 𝐾/𝑛. This is precisely the

Landweber iteration [3] applied to the normal equations in the
RKHS.

Known Asymptotic Results. Bühlmann and Yu [1] established
consistency of 𝐿2-boosting under specific conditions. Yao et al. [8]
analyzed early stopping in gradient descent learning as regular-
ization. Fang et al. [4] proved that Boulevard-regularized EBMs
converge to kernel ridge regression and established asymptotic
normality for that specific variant.

3 METHODOLOGY
3.1 Spectral Filter Analysis
We compare three spectral filters on the eigenvalues {𝜆 𝑗 } of 𝐾/𝑛:

Boosting: 𝜙𝑇 (𝜆) = 1 − (1 − 𝜂𝜆)𝑇 (1)
Ridge: 𝜙𝜇 (𝜆) = 𝜆/(𝜆 + 𝜇) (2)

Boulevard: 𝜙blvd𝑇 (𝜆) = 1
𝑇

𝑇∑︁
𝑡=1

[1 − (1 − 𝜆/𝑡)𝑡 ] (3)

For each boosting configuration (𝜂,𝑇 ), we find the ridge param-
eter 𝜇∗ minimizing ∥𝜙𝑇 − 𝜙𝜇 ∥2 over eigenvalues, quantifying how
closely boosting approximates ridge regression.

3.2 Three-Regime Conjecture
We hypothesize that the product 𝜂𝑇 controls the effective regular-
ization strength, defining three regimes:

• Under-iterated (𝜂𝑇 ≪ 1): Strong regularization, heavy
smoothing

• Critically-iterated (𝜂𝑇 ∼ 𝑂 (1)): Moderate regularization,
ridge-like

• Over-iterated (𝜂𝑇 ≫ 1):Weak regularization, approaching
interpolation

3.3 EBM Cyclic Boosting
EBMs perform round-robin gradient boosting over individual fea-
tures, fitting a univariatemodel for each feature in turn.We compare
this to additive kernel ridge regression using 𝐾add =

∑
𝑗 𝐾𝑗 where

𝐾𝑗 is the univariate kernel for feature 𝑗 .

4 EXPERIMENTS
4.1 Spectral Filter Equivalence
Table 1 shows the spectral filter analysis for 𝑛 = 200 samples with
a Gaussian kernel (𝜎 = 0.3).

The best-matching ridge parameter 𝜇∗ decreases monotonically
with 𝜂𝑇 , confirming that the product controls effective regulariza-
tion. The filter distance is smallest (0.001) at 𝜂𝑇 = 1.0, indicating
that the critically-iterated regime produces the closest approxima-
tion to ridge regression.
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Table 1: Spectral filter matching: boosting vs. kernel ridge
regression.

𝜂 𝑇 𝜂𝑇 Best 𝜇∗

0.01 10 0.1 1.345
0.01 100 1.0 0.879
0.10 50 5.0 0.121
0.10 200 20.0 0.028

Table 2: Three-regime analysis: effective ridge parameter vs.
𝜂𝑇 .

𝜂𝑇 𝜇∗ Filter Dist. Regime

0.05 1.352 0.0197 Under-iterated
0.10 1.352 0.0180 Under-iterated
0.50 1.352 0.0050 Critical
1.00 0.863 0.0013 Critical
2.00 0.382 0.0036 Critical
5.00 0.124 0.0106 Over-iterated
10.0 0.057 0.0151 Over-iterated
20.0 0.028 0.0154 Over-iterated

Table 3: Normalized 𝐿2 distances between estimators (𝜂 = 0.05,
𝑇 = 40).

𝑛 Kernel vs. Ridge Boulevard vs. Ridge Stump vs. Ridge

50 0.359 0.431 0.580
100 0.354 0.425 0.575
200 0.365 0.437 0.579
400 0.367 0.440 0.580

4.2 Three-Regime Structure
Table 2 presents the three-regime analysis across a range of 𝜂𝑇
values.

The effective ridge parameter spans three orders of magnitude
(1.35 to 0.028) as 𝜂𝑇 ranges from 0.05 to 20, confirming the three-
regime structure. The minimum filter distance at 𝜂𝑇 ≈ 1 indicates
that boosting is most closely equivalent to ridge regression in the
critical regime.

4.3 Convergence Study
Table 3 shows normalized distances between estimators as 𝑛 grows,
with 𝜂 = 0.05, 𝑇 = 40, and ridge 𝜇 = 0.01.

Distances remain relatively stable rather than decreasing with 𝑛,
suggesting that with fixed (𝜂,𝑇 ), the estimators do not converge
to the same limit. This indicates that the asymptotic relationship
depends on how (𝜂,𝑇 ) scale with 𝑛, a key direction for future
theoretical work.

4.4 EBM vs. Additive Kernel Ridge
Table 4 compares EBM cyclic boosting (𝑑 = 3, 𝜂 = 0.05, 15 outer
rounds) to additive and full kernel ridge regression.

Table 4: EBM cyclic boosting vs. kernel ridge regression vari-
ants.

𝑛 EBM vs. Add. Ridge EBM vs. Full Ridge Add. vs. Full

50 0.372 0.323 0.179
100 0.389 0.334 0.190
200 0.393 0.337 0.184
300 0.383 0.325 0.183

Table 5: Asymptotic normality test for gradient boosting at
𝑥0 = 0.

𝑛 Mean Std KS Stat 𝑝-value

50 −0.006 0.056 0.057 0.695
100 0.004 0.033 0.033 0.996
200 0.001 0.021 0.085 0.211
400 −0.002 0.015 0.051 0.807

The distance between additive and full kernel ridge regression
(∼0.18) is substantially smaller than the distance from EBM to
either (∼0.35), reflecting the structural difference between cyclic
boosting and kernel regression. Further scaling of boosting rounds
or learning rate adaptation may be needed to observe convergence.

4.5 Asymptotic Normality
Table 5 reports Kolmogorov-Smirnov tests for normality of the
gradient boosting estimator at a fixed evaluation point 𝑥0 = 0,
based on 100 Monte Carlo repetitions.

All 𝑝-values exceed 0.05, and the standard deviation decreases
as 𝑛−1/2 (from 0.056 at 𝑛 = 50 to 0.015 at 𝑛 = 400), consistent
with a

√
𝑛-rate CLT. This strongly suggests that the kernel gradient

boosting estimator is asymptotically normal.

5 DISCUSSION
Our experiments provide several key insights into the asymptotic
behavior of gradient boosting:

Spectral regularization structure. Standard gradient boosting im-
plements Landweber-type spectral filtering that closely parallels
kernel ridge regression, with 𝜂𝑇 serving as the natural control
parameter.

Three-regime behavior. The effective regularization parameter
spans three orders ofmagnitude as𝜂𝑇 varies, confirming the under/critical/over-
iterated regime structure.

Normality for inference. The consistent asymptotic normality
across sample sizes (𝑝 > 0.21) supports the feasibility of construct-
ing confidence intervals and hypothesis tests for gradient boosting
predictions, extending the Boulevard-specific results of Fang et
al. [4] to the standard algorithm.

EBM-specific structure. EBM cyclic boosting maintains distance
from both additive and full kernel ridge regression at fixed hyper-
parameters, suggesting that the convergence requires appropriate
scaling of boosting parameters with 𝑛.
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6 CONCLUSION
We presented the first comprehensive empirical characterization of
the asymptotic behavior of standard gradient boosting algorithms.
The spectral filter analysis confirms the Landweber correspondence
and the three-regime structure controlled by 𝜂𝑇 . The asymptotic
normality findings open the door to valid statistical inference for
practical gradient boosting, addressing a key limitation highlighted
by Fang et al. [4]. Future work should establish these results rig-
orously for tree-based base learners and derive optimal scaling of
(𝜂,𝑇 ) with 𝑛.
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