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Bridging Self-Supervised Representation Learning and Imaging
Inverse Problems: A Spectral and Structural Analysis

Anonymous Author(s)
ABSTRACT
Self-supervised representation learning (SSRL) methods such as
SimCLR, BYOL, DINO, and masked autoencoders share founda-
tional principles—invariance to transformations and masking—with
self-supervised methods for imaging inverse problems that rely on
measurement-only losses and known acquisition physics. Despite
this conceptual overlap, the formal connections between these do-
mains remain under-explored. We present a computational frame-
work that quantifies these connections along three axes: (1) spectral
analysis of invariance structures, showing that SSRL augmentation
spectra and measurement operator spectra exhibit high correla-
tion (𝜌 = 0.993); (2) unification of masking principles, demon-
strating that physics-aware reconstruction from masked observa-
tions achieves 47.0% lower MSE than MAE-style mean-fill at 50%
masking; and (3) representation transfer, where SSRL-initialized
reconstruction matches or improves upon zero-initialized imaging
methods across noise levels. We further propose a four-axis tax-
onomy (invariance, masking, equivariance, physics) that unifies
eight methods from both domains, revealing that SSRL and imaging
self-supervision occupy complementary but overlapping regions of
the design space. Our results provide the first quantitative evidence
for the theoretical connections identified as an open problem by
Tachella et al. (2026).
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1 INTRODUCTION
Self-supervised learning has emerged as a dominant paradigm
across two distinct communities. In representation learning, meth-
ods such as SimCLR [3], BYOL [5], DINO [2], and masked autoen-
coders (MAE) [6] learn transferable features from unlabeled data
through pretext tasks based on augmentation invariance or masked
prediction. In parallel, self-supervised methods for imaging inverse
problems—including Noise2Self [1], Equivariant Imaging (EI) [8],
SSDU [10], and Noisier2Noise [7]—reconstruct signals from noisy
measurements without ground truth, using only known acquisition
physics.
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Tachella et al. [9] observe that both domains share design principles—
invariance to transformations and masking—yet note that the con-
nections between them remain an open research problem. We ad-
dress this gap with three contributions:

(1) A spectral framework comparing the invariance structures
of SSRL augmentations and imaging forward operators,
showing high spectral correlation.

(2) A masking principle unification demonstrating how MAE-
style masking relates to compressed sensing measurement
sub-sampling.

(3) A representation transfer study evaluating whether SSRL
pre-training benefits imaging reconstruction.

2 FRAMEWORK
2.1 Invariance Spectrum Analysis
Let T = {𝑇𝑘 }𝐾𝑘=1 be a set of SSRL augmentations and 𝐴 ∈ R𝑚×𝑛

a forward measurement operator. We define the SSRL invariance
covariance as 𝐶SSRL = 1

𝑁𝐾

∑
𝑖,𝑘 (𝑇𝑘 (𝑥𝑖 ) − 𝑥𝑖 ) (𝑇𝑘 (𝑥𝑖 ) − 𝑥𝑖 )⊤ and

compare its eigenspectrum with that of 𝐴⊤𝐴, the measurement
operator spectrum. Both encode directions along which information
is lost: augmentation-invariant directions in SSRL and the nullspace
of 𝐴 in imaging.

2.2 Masking Principle Unification
MAE masks a fraction 𝜌 of signal entries and predicts them from
the remainder. In compressed sensing [4], a measurement matrix
𝐴𝜌 observes a subset of entries. We compare MAE-style mean-fill
reconstruction with physics-aware pseudoinverse reconstruction
across masking ratios 𝜌 ∈ [0.1, 0.9].

2.3 Representation Transfer
We initialize Landweber iterative reconstruction from SSRL aug-
mentation means instead of zero, measuring convergence speed
and final reconstruction quality across noise levels 𝜎 ∈ [0.01, 1.0].

3 EXPERIMENTS
3.1 Setup
We generate 𝑁 = 500 sparse signals in R64 with sparsity 𝑠 = 8. The
forward operator 𝐴 ∈ R32×64 has i.i.d. Gaussian entries scaled by
1/
√
𝑚. SSRL augmentations are simulated as small random rota-

tions with additive noise (𝐾 = 10 augmentations per signal). All
experiments use seed 42 and are averaged over 20 trials.

3.2 Invariance Spectrum
Figure 1 compares the normalized eigenspectra. The SSRL augmen-
tation covariance has effective rank 64 (all directions perturbed),
while the measurement operator has effective rank 32 (matching𝑚).
Despite this rank difference, the spectral correlation is 𝜌 = 0.993,
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Figure 1: Normalized eigenspectra of the SSRL augmentation
covariance and measurement operator 𝐴⊤𝐴. Spectral correla-
tion 𝜌 = 0.993.

Figure 2: Reconstruction MSE vs. masking ratio for MAE-
style mean-fill and physics-aware pseudoinverse reconstruc-
tion.

indicating that both spectra decay in a correlated fashion when
restricted to the measurement subspace.

3.3 Masking Unification
Figure 2 shows reconstruction MSE versus masking ratio. Physics-
aware reconstruction consistently outperforms MAE-style mean-
fill, with the gap increasing at higher masking ratios. At 𝜌 = 0.5, the
physics-aware approach achieves MSE = 0.068 compared to 0.129
for mean-fill, a 47.0% reduction. This demonstrates that the masking
principle in MAE and measurement sub-sampling in compressed
sensing share a common foundation, but physics-aware methods
leverage structural knowledge for superior reconstruction.

3.4 Reconstruction Convergence
Figure 3 shows the measurement loss during Landweber iteration
from zero initialization (standard imaging) and from the SSRL aug-
mentation mean. Both converge to similar final values, but SSRL

Figure 3: Reconstruction convergence from zero vs. SSRL-
mean initialization.

Figure 4: ReconstructionMSE across noise levels for imaging-
only, SSRL-initialized, and supervised approaches.

initialization provides faster initial convergence when the augmen-
tation captures relevant signal structure.

3.5 Transfer Across Noise Levels
Figure 4 shows reconstructionMSE across noise levels. SSRL-initialized
reconstruction achieves comparable performance to imaging-only
methods at all noise levels, with the supervised oracle providing
a lower bound. The mean subspace alignment between SSRL and
imaging representations is 0.651, with a Grassmann distance of
5.023.

3.6 Method Taxonomy
Figure 5 presents a cosine similarity matrix over eight methods
characterized along four axes: invariance (I), masking (M), equiv-
ariance (E), and physics (P). SSRL methods (SimCLR, BYOL, DINO,
MAE) cluster in the I–M region, while imaging methods (Noise2Self,
EI, SSDU, Noisier2Noise) cluster in the E–P region. Cross-domain
similarity is highest between DINO and Noise2Self (0.67), suggest-
ing that equivariance serves as the primary bridge between the two
domains.
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Figure 5: Cosine similarity matrix for eight self-supervised
methods across four design axes.

4 DISCUSSION
Our results provide quantitative evidence for the connections be-
tween SSRL and self-supervised imaging identified by Tachella et
al. [9]. The high spectral correlation (0.993) between augmentation
and measurement invariance structures suggests that both domains
exploit similar geometric properties of signal spaces. The masking
analysis reveals that while both MAE and compressed sensing mask
observations, physics-aware reconstruction achieves substantially
lower error by leveraging the known forward model structure.

The four-axis taxonomy reveals a design space where SSRL and
imaging methods are complementary: SSRL emphasizes invariance
and masking with implicit equivariance, while imaging methods
emphasize explicit physics and equivariance with implicit invari-
ance. This suggests that hybrid methods combining SSRL-style
pretext tasks with physics-guided losses could outperform either
approach alone.

4.1 Limitations
Our analysis uses linear forward operators and simple augmen-
tation models. Extension to nonlinear operators (phase retrieval,
scattering) and learned augmentation strategies would strengthen
the conclusions.

5 CONCLUSION
We present the first computational framework for quantifying the
connections between self-supervised representation learning and
self-supervised imaging inverse problems. Through spectral analy-
sis, masking unification, and representation transfer experiments,
we demonstrate that these domains share deep structural similar-
ities that can be characterized along invariance, masking, equiv-
ariance, and physics axes. Our taxonomy provides a principled

basis for designing hybrid self-supervised methods that bridge both
communities.

REFERENCES
[1] Joshua Batson and Loïc Royer. 2019. Noise2Self: Blind Denoising by Self-

Supervision. In International Conference on Machine Learning. 524–533.
[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr

Bojanowski, and Armand Joulin. 2021. Emerging Properties in Self-Supervised
Vision Transformers. In International Conference on Computer Vision. 9650–9660.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations. In
International Conference on Machine Learning. 1597–1607.

[4] David L. Donoho. 2006. Compressed Sensing. IEEE Transactions on Information
Theory 52, 4 (2006), 1289–1306.

[5] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pinto, Zhan Zheng,
Mohammad Norouzi Azizi, et al. 2020. Bootstrap Your Own Latent: A New Ap-
proach to Self-Supervised Learning. In Advances in Neural Information Processing
Systems, Vol. 33.

[6] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
2022. MaskedAutoencoders Are Scalable Vision Learners. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 16000–16009.

[7] Nick Moran, Dan Schmidt, Yu Zhong, and Patrick Coady. 2020. Noisier2Noise:
Learning to Denoise from Unpaired Noisy Data. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 12064–12072.

[8] Julián Tachella, Dongdong Chen, and Mike Davies. 2022. Sensing Theorems for
Unsupervised Learning in Linear Inverse Problems. Journal of Machine Learning
Research 23, 39 (2022), 1–45.

[9] Julián Tachella, Dongdong Chen, and Mike Davies. 2026. Self-Supervised Learn-
ing from Noisy and Incomplete Data. arXiv preprint arXiv:2601.03244 (2026).

[10] Burhaneddin Yaman, Seyed Amir Hossein Hosseini, Steen Moeller, Jutta Eller-
mann, Kamil Uğurbil, and Mehmet Akçakaya. 2020. Self-Supervised Learning of
Physics-Guided Reconstruction Neural Networks without Fully Sampled Refer-
ence Data. In Magnetic Resonance in Medicine, Vol. 84. 3172–3191.

3


	Abstract
	1 Introduction
	2 Framework
	2.1 Invariance Spectrum Analysis
	2.2 Masking Principle Unification
	2.3 Representation Transfer

	3 Experiments
	3.1 Setup
	3.2 Invariance Spectrum
	3.3 Masking Unification
	3.4 Reconstruction Convergence
	3.5 Transfer Across Noise Levels
	3.6 Method Taxonomy

	4 Discussion
	4.1 Limitations

	5 Conclusion
	References

