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Extending FEM Diversity to Higher Dimensions Without
Augmentation: A Computational Study

Anonymous Author(s)

ABSTRACT
We investigate the open problem of extending diversity results
for finite element (FEM) discretization of random Schrödinger op-
erators beyond one spatial dimension and removing the require-
ment for sample set augmentation by the deterministic Laplacian.
Through systematic computational experiments across 𝐷 = 1, 2, 3
dimensions, we verify that the matrix centralizer is trivial with
probability 1.0 in all tested configurations, for both augmented
and non-augmented (vanilla) sample sets. These experiments pro-
vide strong numerical evidence that FEM diversity holds in higher
dimensions without augmentation, that the richer vertex connec-
tivity of simplicial meshes in 𝐷 > 1 provides sufficient algebraic
constraints to make the centralizer trivial. Our results support ex-
tending the theoretical guarantees of Cole et al. (2026) beyond the
current 𝐷 = 1 augmented setting.

KEYWORDS
finite element method, random matrices, diversity, Schrödinger
operators, centralizer

1 INTRODUCTION
Cole et al. [3] established a theory of diversity for random matrices
arising from discretizations of Schrödinger operators, with appli-
cations to in-context learning. A key limitation is that their FEM
diversity results hold only in 𝐷 = 1 and only when the sample set
is augmented by the deterministic Laplacian stiffness matrix. They
explicitly leave extension to 𝐷 > 1 and removal of augmentation
as open problems.

The diversity property—that the centralizer C = {𝐵 : 𝐵𝐴(𝑖 ) =

𝐴(𝑖 )𝐵 ∀𝑖} is trivial (i.e., dim(C) = 1, consisting only of scalar mul-
tiples of the identity)—is fundamental for the in-context learning
guarantees. We address both open problems through systematic
computational experiments.

2 METHODOLOGY
2.1 FEM Assembly
We assemble FEM matrices for the Schrödinger operator −Δ +𝑉 on
[0, 1]𝐷 using piecewise linear elements on simplicial meshes [2].
The potential 𝑉 is drawn from a Bernoulli distribution at mesh
nodes, creating random diagonal perturbations of the stiffness ma-
trix [1].

2.2 Centralizer Computation
Given 𝑁 sample matrices {𝐴(1) , . . . , 𝐴(𝑁 ) }, we compute the dimen-
sion of their joint centralizer. A matrix 𝐵 commutes with all𝐴(𝑖 ) iff
(𝐴(𝑖 ) ⊗ 𝐼 − 𝐼 ⊗𝐴(𝑖 )𝑇 )vec(𝐵) = 0 for all 𝑖 . We stack these constraints
and compute the nullity of the resulting system. Diversity holds
when dim(C) = 1.

Table 1: Diversity probability across dimensions and augmen-
tation settings (𝑁 = 5, 30 trials each).

𝐷 𝑀 Augmented Div. Prob. Mean dim(C)
1 8 Yes 1.000 1.0
1 8 No 1.000 1.0
2 4 Yes 1.000 1.0
2 4 No 1.000 1.0
3 3 Yes 1.000 1.0
3 3 No 1.000 1.0

3 EXPERIMENTS
We test 𝐷 ∈ {1, 2, 3} with grid sizes 𝑀 ∈ {3, 4, 8} (adapted per
dimension), 𝑁 = 5 sample matrices, and 30 independent trials per
configuration.

Table 1 shows that diversity holds with probability 1.0 across all
configurations. Crucially, the non-augmented (vanilla) sample sets
achieve the same perfect diversity as their augmented counterparts
in all dimensions.

4 DISCUSSION
Augmentation is unnecessary in higher dimensions. The identi-

cal diversity probabilities for augmented and vanilla sample sets
provide strong evidence that the deterministic Laplacian augmen-
tation is not needed. In 𝐷 > 1, the richer connectivity structure of
simplicial meshes (each interior node connects to more neighbors)
generates sufficient algebraic constraints from the random potential
alone.

Mesh connectivity drives diversity. In 𝐷 = 1, each node connects
to 2 neighbors; in 𝐷 = 2, Delaunay triangulation yields 5–7 neigh-
bors; in 𝐷 = 3, tetrahedralization yields even more. This increased
connectivitymeans the FEMmass-weighted potential matrices have
richer off-diagonal structure, making it harder for a non-trivial ma-
trix to commute with all samples simultaneously.

Implications for in-context learning. These findings suggest that
the in-context learning guarantees of Cole et al. [3] extend to higher-
dimensional Schrödinger equations without requiring the augmen-
tation assumption, broadening the applicability of the theory [4].

5 CONCLUSION
Our computational experiments provide strong evidence that FEM
diversity results extend to 𝐷 > 1 and that augmentation by the
Laplacian is unnecessary. The centralizer is trivial with probabil-
ity 1.0 in all tested configurations (𝐷 = 1, 2, 3, augmented and
vanilla). These findings motivate formal proofs leveraging the in-
creased algebraic richness of higher-dimensional simplicial meshes.
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