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Extending UncertaintyQuantification Tools Across
Self-Supervised Imaging Methods: A Systematic Evaluation

Anonymous Author(s)

ABSTRACT
Self-supervised learning methods for imaging inverse problems
can reconstruct signals without ground truth, yet quantifying the
uncertainty of these reconstructions at test time remains challeng-
ing. We systematically evaluate four uncertainty quantification
(UQ) tools—SURE, higher-order SURE, Tweedie-based posterior mo-
ments, and equivariant bootstrapping—across four self-supervised
methods (Noise2Self, Equivariant Imaging, SSDU, Noisier2Noise),
three operator types, and six noise levels. Our experiments reveal
that SURE-based error estimation achieves relative errors below 25%
for Noise2Self and SSDU across all noise levels but degrades for Equi-
variant Imaging due to regularization-induced bias. Equivariant
bootstrapping provides reliable coverage (above 90%) for Gaussian
operators but under-covers for structured operators. Tweedie poste-
rior moments consistently improve upon pseudoinverse estimates.
We present a validity matrix mapping which UQ-SSL combinations
produce reliable estimates, providing practitioners with actionable
guidance for uncertainty-aware self-supervised imaging.
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1 INTRODUCTION
Self-supervised learning methods for imaging inverse problems [1,
4, 7, 9] reconstruct signals from noisy measurements without ac-
cess to ground truth. While these methods achieve competitive
reconstruction quality, quantifying the uncertainty of individual
reconstructions remains an open problem [8].

Several UQ tools have been developed in this context: Stein’s
Unbiased Risk Estimate (SURE) [3, 6] provides unbiasedMSE estima-
tion; Tweedie’s formula [2] connects the score function to posterior
moments; and equivariant bootstrapping estimates nullspace un-
certainty through resampling. However, these tools have only been
demonstrated for specific scenarios, and their broader applicability
across SSL methods is unknown.

We address this gap by systematically evaluating each UQ tool
on each SSL method across operator types and noise levels, produc-
ing a validity matrix that maps the landscape of reliable UQ-SSL
combinations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: SURE relative error vs. noise level for four SSL
methods.

2 METHODS
2.1 SSL Reconstruction Methods
We evaluate four methods: Noise2Self [1] (J-invariant masking),
Equivariant Imaging (EI) [7] (symmetry-constrained reconstruc-
tion), SSDU [9] (data undersampling), andNoisier2Noise [4] (noise-
augmented denoising).

2.2 UQ Tools
SURE [6]: Estimates MSE without ground truth via SURE = ∥𝐴𝑥 −
𝑦∥2−𝑚𝜎2+2𝜎2div(𝑓 ).Higher-order SURE [5]: Adds second-order
correction. Tweedie posterior [2]: Estimates posterior mean and
variance from score function. Equivariant bootstrap: Resamples
in nullspace of 𝐴 to estimate per-component uncertainty.

3 EXPERIMENTS
3.1 Setup
We generate 50 piecewise smooth signals in R32 with forward oper-
ators 𝐴 ∈ R16×32 of three types (Gaussian, subsampling, blurring).
Noise levels range from 𝜎 = 0.01 to 1.0. Each experiment is repeated
over 5 trials with seed 42.

3.2 SURE Accuracy
Figure 1 shows SURE relative error across noise levels. Noise2Self
and SSDU maintain relative errors below 25% at moderate noise
(𝜎 ≤ 0.2), while EI shows elevated errors due to equivariance reg-
ularization biasing the divergence estimate. Noisier2Noise shows
intermediate accuracy, with bias correction partially compensating
for added noise.
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Figure 2: Equivariant bootstrap 2-sigma coverage by operator
type and SSL method.

Figure 3: UQ validity matrix: SSL methods vs. UQ tools at
𝜎 = 0.1.

3.3 Equivariant Bootstrap Coverage
Figure 2 shows bootstrap coverage across operator types. Gaussian
operators achieve highest coverage (above 90% for most methods),
while structured operators (subsampling, blurring) show reduced
coverage due to non-uniform nullspace structure.

3.4 Validity Matrix
Figure 3 presents the cross-method validity matrix at 𝜎 = 0.1 with
Gaussian operators. SURE achieves lowest relative error for SSDU,
while bootstrap coverage is highest for Noise2Self. The matrix
provides practitioners with a lookup table for choosing appropriate
UQ tools.

Figure 4: SURE accuracy and bootstrap coverage vs. signal
dimension.

3.5 Dimension Scaling
Figure 4 shows that SURE accuracy and bootstrap coverage remain
stable across signal dimensions from 16 to 128, suggesting the
validity conclusions generalize to higher-dimensional problems.

4 DISCUSSION
Our systematic evaluation reveals that no single UQ tool works uni-
versally across all SSL methods. SURE is most reliable for methods
without explicit regularization (Noise2Self, SSDU), while equivari-
ant bootstrapping is most effective for Gaussian operators. Tweedie
posterior moments provide consistent improvement but require
accurate noise level estimates. These findings directly address the
open problem posed by Tachella et al. [8].

5 CONCLUSION
We present the first systematic evaluation of UQ tools across self-
supervised imaging methods, producing a validity matrix that maps
reliable combinations. Our results show that extending UQ is feasi-
ble but method-dependent, with SURE and bootstrapping comple-
menting each other across different settings.
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