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Toward a General Theory for Nonlinear Forward Operators in
Self-Supervised Inverse Problems

Anonymous Author(s)
ABSTRACT
Self-supervised learning methods for inverse problems have strong
theoretical foundations when the forward operator is linear, but
these guarantees do not extend to nonlinear operators arising
in phase retrieval, quantized sensing, and inverse scattering. We
present a computational framework for characterizing the behavior
of self-supervised losses under four representative operator types:
linear, phase retrieval, quantized sensing, and sigmoid nonlinear-
ity. Through loss landscape analysis, convergence studies, local
linearity assessment, and measurement ratio experiments, we es-
tablish an empirical complexity hierarchy for nonlinear operators.
We find that phase retrieval exhibits condition numbers 2.5× higher
than linear operators but achieves comparable reconstruction MSE
with sufficient measurements. Quantized sensing shows extreme
sensitivity at decision boundaries (condition number > 106) but
paradoxically achieves lower MSE due to the discrete nature of the
forward map. Local linearity degrades sharply beyond perturba-
tion radius 0.1 for all nonlinear operators, suggesting that local
linear approximations are valid only in a neighborhood of the so-
lution. These results provide empirical foundations for extending
self-supervised learning theory to nonlinear inverse problems.
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1 INTRODUCTION
The theoretical analysis of self-supervised learning for inverse prob-
lems has primarily focused on linear forward operators 𝐴 : R𝑛 →
R𝑚 [1, 5, 6]. However, many real-world inverse problems involve
nonlinear operators: phase retrieval [3], quantized sensing [2], and
inverse scattering.

Tachella et al. [6] identify the development of a general theo-
retical framework for nonlinear operators as a core open problem,
noting that while SSL losses can in principle be applied to nonlin-
ear models, existing analyses are restricted to the linear case. We
address this gap by empirically characterizing the behavior of SSL
losses under four representative nonlinear operators.
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Figure 1: SSL loss landscapes along a random direction for
four operator types.

2 FRAMEWORK
We study forward operators A : R𝑛 → R𝑚 of increasing nonlin-
earity:

• Linear: A(𝑥) = 𝐴𝑥

• Phase retrieval: A(𝑥) = |𝐴𝑥 |2 [3]
• Quantized sensing: A(𝑥) = 𝑄 (𝐴𝑥) [2]
• Sigmoid: A(𝑥) = 𝜎 (𝐴𝑥)

For each operator, we analyze the SSL measurement loss L(𝑥) =
∥A(𝑥) − 𝑦∥2 where 𝑦 = A(𝑥∗) + 𝜖 are noisy measurements.

3 EXPERIMENTS
3.1 Setup
Signals 𝑥 ∈ R24 with Gaussian entries, measurement matrices
𝐴 ∈ R36×24 with i.i.d. entries, noise 𝜎 = 0.1. All experiments use
seed 42.

3.2 Loss Landscape
Figure 1 shows the SSL loss along a random direction through the
ground truth. Linear and sigmoid operators produce smooth, convex
landscapes. Phase retrieval shows a non-convex landscape with
multiple local minima. Quantized sensing produces a piecewise
constant landscape with discontinuities at quantization boundaries.

3.3 Convergence
Figure 2 shows convergence of gradient descent on the SSL loss.
All operators converge, but phase retrieval exhibits oscillations due

1
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Figure 2: Convergence of SSL reconstruction for different
operators.

Figure 3: Linearization error vs. perturbation radius.

to non-convexity, while quantized sensing shows plateaus corre-
sponding to quantization levels.

3.4 Local Linearity
Figure 3 shows that linearization error remains below 10% at radius
0.01 for all operators, but diverges rapidly for phase retrieval and
quantized sensing beyond radius 0.1. This suggests that local analy-
ses may extend to nonlinear operators within a basin of attraction
around the ground truth.

3.5 Complexity Hierarchy
Figure 4 plots Jacobian condition number against reconstruction
MSE. Linear and sigmoid operators have similar condition num-
bers (∼ 8.6), while phase retrieval is 2.5× higher (21.1). Quantized
sensing has extreme condition (> 106) at boundaries but achieves
low MSE due to discretization.

3.6 Measurement Ratio
Figure 5 shows that all operators benefit from oversampling, with
phase retrieval requiring𝑚/𝑛 ≥ 2 for stable recovery, consistent
with theoretical predictions [3, 4].

Figure 4: Operator complexity: Jacobian condition number
vs. MSE.

Figure 5: ReconstructionMSE vs. measurement ratio for each
operator.

4 DISCUSSION
Our results suggest three principles for extending SSL theory to
nonlinear operators: (1) local linearity is sufficient within a basin
of attraction, enabling perturbation-based analysis; (2) the Jacobian
condition number captures operator difficulty but must account for
discrete operators; and (3) oversampling requirements scale with
operator nonlinearity.

5 CONCLUSION
We provide the first systematic empirical characterization of SSL
loss behavior under nonlinear forward operators, establishing a
complexity hierarchy and identifying local linearity as the key
property enabling theoretical extension.
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