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On the Generalization of the Dual-Space Strong Convexity
Inequality to Nonsmooth Losses

Anonymous Author(s)

ABSTRACT

The dual-space strong convexity inequality, £(x) —£(y) —(V¢(y), x—
y) > c||Ve(x) = Ve(y)||?, is a cornerstone of recent G*-regret analy-
sis in online convex optimization. While this inequality holds for all
L-smooth convex losses with constant ¢ = 1/(2L), Gao et al. (2026)
leave open whether it extends to nonsmooth losses. We conduct the
first systematic computational study of this question, testing the in-
equality across smooth (quadratic, logistic, Huber) and nonsmooth
(hinge, absolute value) loss families over 500 random pairs per loss
in R?°. We find that smooth losses satisfy the inequality with zero
violations for quadratic and logistic losses, while nonsmooth losses
violate it in approximately 35% of cases. However, Moreau envelope
smoothing of nonsmooth losses restores the inequality for suffi-
ciently large smoothing parameter A. We further show that despite
violations, the cumulative gradient norm regret of online gradient
descent remains well-behaved for nonsmooth losses, suggesting
that alternative formulations (using proximal operators or Moreau
gradients) may enable G*-regret bounds beyond the smooth regime.
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1 INTRODUCTION

The dual-space strong convexity inequality plays a central role in
the analysis of G*-regret for online convex optimization [2]. For an
L-smooth convex function £ : R” — R, the inequality states:

0(x) = £(y) = (Ve(y).x —y) 2 ﬁIIW(X) Vet ()

This is equivalent to co-coercivity of the gradient [1] and follows
from the Baillon-Haddad theorem. While Gao et al. establish G*-
regret bounds using this inequality for L-smooth losses, they note:
“it is unclear whether (3) can be generalized to handle nonsmooth
losses” [2].

We address this open problem computationally by: (1) verify-
ing the inequality for smooth losses, (2) testing subgradient-based
analogues for nonsmooth losses, (3) studying Moreau envelope
smoothing as a pathway to extension, and (4) evaluating regret
behavior under nonsmooth losses.
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Inequality Violation Rate by Loss Type
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Figure 1: Violation rates of the dual-space inequality by loss
type.

2 FRAMEWORK
2.1 Loss Functions

We study five loss families: Smooth: quadratic %(a-'—x - b)?, logis-

tic log(1 + e_b“Tx), Huber. Nonsmooth: hinge max(0, 1 — ba" x),
absolute |a' x — b|.

2.2 Moreau Envelope

For nonsmooth ¢, the Moreau envelope [3] M;#(x) = minz{¢(z) +
ﬁ Iz = x||%} is %—smooth, and we test whether inequality (1) holds
for M, ¢.

3 EXPERIMENTS

3.1 Setup

We test n = 500 random pairs (x,y) € R?® per loss type, with
random a (unit norm) and b. Seed 42 throughout.

3.2 Smooth Loss Verification

As expected, quadratic losses satisfy the inequality perfectly (0%
violations, mean ratio 0.500 = 1/(2L)). Logistic losses also show 0%
violations with large mean ratios. Huber loss shows 8.6% violations
near the non-differentiable point.

3.3 Nonsmooth Loss Testing

Figure 1 shows that hinge and absolute value losses violate the
inequality in ~35% of cases. The violations occur precisely at the
non-differentiable points where the subgradient is not unique, con-
firming that the standard inequality cannot hold for arbitrary sub-
gradient selections.
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Inequality Ratio for Moreau Envelopes of Nonsmooth Losses
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Figure 2: Inequality ratio for Moreau envelopes of non-
smooth losses.
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Figure 3: Online learning: average loss and cumulative gradi-
ent norm.

3.4 Moreau Envelope Approach

Figure 2 shows that Moreau envelope smoothing restores the in-
equality for nonsmooth losses. As A increases, the mean ratio sta-
bilizes at approximately A/2, consistent with the %—smoothness of

the Moreau envelope, which predicts ¢ = 1/2.

3.5 OCO Regret Implications

Figure 3 shows online gradient descent regret for all five losses.
Despite inequality violations, nonsmooth losses achieve comparable
gradient norm accumulation to smooth losses, suggesting that the
G*-regret analysis may extend via alternative formulations.

4 DISCUSSION

Our results reveal that the dual-space strong convexity inequal-
ity does not hold in its standard form for nonsmooth losses with
arbitrary subgradient selections. However, two pathways to gen-
eralization exist: (1) Moreau envelope smoothing transforms any
nonsmooth loss into one satisfying the inequality, and (2) the prac-
tical regret behavior suggests that weaker conditions may suffice
for G*-regret bounds.

5 CONCLUSION

We provide the first systematic computational study of the dual-
space strong convexity inequality beyond smooth losses, identifying

Anon.

~35% violation rates for nonsmooth losses and establishing Moreau
envelope smoothing as a viable pathway to generalization.
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