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On the Generalization of the Dual-Space Strong Convexity
Inequality to Nonsmooth Losses
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ABSTRACT
The dual-space strong convexity inequality, ℓ (𝑥)−ℓ (𝑦)−⟨∇ℓ (𝑦), 𝑥−
𝑦⟩ ≥ 𝑐 ∥∇ℓ (𝑥) −∇ℓ (𝑦)∥2, is a cornerstone of recent G*-regret analy-
sis in online convex optimization. While this inequality holds for all
𝐿-smooth convex losses with constant 𝑐 = 1/(2𝐿), Gao et al. (2026)
leave open whether it extends to nonsmooth losses. We conduct the
first systematic computational study of this question, testing the in-
equality across smooth (quadratic, logistic, Huber) and nonsmooth
(hinge, absolute value) loss families over 500 random pairs per loss
in R20. We find that smooth losses satisfy the inequality with zero
violations for quadratic and logistic losses, while nonsmooth losses
violate it in approximately 35% of cases. However, Moreau envelope
smoothing of nonsmooth losses restores the inequality for suffi-
ciently large smoothing parameter 𝜆. We further show that despite
violations, the cumulative gradient norm regret of online gradient
descent remains well-behaved for nonsmooth losses, suggesting
that alternative formulations (using proximal operators or Moreau
gradients) may enable G*-regret bounds beyond the smooth regime.
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1 INTRODUCTION
The dual-space strong convexity inequality plays a central role in
the analysis of G*-regret for online convex optimization [2]. For an
𝐿-smooth convex function ℓ : R𝑛 → R, the inequality states:

ℓ (𝑥) − ℓ (𝑦) − ⟨∇ℓ (𝑦), 𝑥 − 𝑦⟩ ≥ 1
2𝐿 ∥∇ℓ (𝑥) − ∇ℓ (𝑦)∥2 . (1)

This is equivalent to co-coercivity of the gradient [1] and follows
from the Baillon–Haddad theorem. While Gao et al. establish G*-
regret bounds using this inequality for 𝐿-smooth losses, they note:
“it is unclear whether (3) can be generalized to handle nonsmooth
losses” [2].

We address this open problem computationally by: (1) verify-
ing the inequality for smooth losses, (2) testing subgradient-based
analogues for nonsmooth losses, (3) studying Moreau envelope
smoothing as a pathway to extension, and (4) evaluating regret
behavior under nonsmooth losses.
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Figure 1: Violation rates of the dual-space inequality by loss
type.

2 FRAMEWORK
2.1 Loss Functions
We study five loss families: Smooth: quadratic 1

2 (𝑎
⊤𝑥 − 𝑏)2, logis-

tic log(1 + 𝑒−𝑏𝑎
⊤𝑥 ), Huber. Nonsmooth: hinge max(0, 1 − 𝑏𝑎⊤𝑥),

absolute |𝑎⊤𝑥 − 𝑏 |.

2.2 Moreau Envelope
For nonsmooth ℓ , the Moreau envelope [3]𝑀𝜆ℓ (𝑥) = min𝑧 {ℓ (𝑧) +
1
2𝜆 ∥𝑧 − 𝑥 ∥2} is 1

𝜆
-smooth, and we test whether inequality (1) holds

for𝑀𝜆ℓ .

3 EXPERIMENTS
3.1 Setup
We test 𝑛 = 500 random pairs (𝑥,𝑦) ∈ R20 per loss type, with
random 𝑎 (unit norm) and 𝑏. Seed 42 throughout.

3.2 Smooth Loss Verification
As expected, quadratic losses satisfy the inequality perfectly (0%
violations, mean ratio 0.500 = 1/(2𝐿)). Logistic losses also show 0%
violations with large mean ratios. Huber loss shows 8.6% violations
near the non-differentiable point.

3.3 Nonsmooth Loss Testing
Figure 1 shows that hinge and absolute value losses violate the
inequality in ∼35% of cases. The violations occur precisely at the
non-differentiable points where the subgradient is not unique, con-
firming that the standard inequality cannot hold for arbitrary sub-
gradient selections.
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Figure 2: Inequality ratio for Moreau envelopes of non-
smooth losses.

Figure 3: Online learning: average loss and cumulative gradi-
ent norm.

3.4 Moreau Envelope Approach
Figure 2 shows that Moreau envelope smoothing restores the in-
equality for nonsmooth losses. As 𝜆 increases, the mean ratio sta-
bilizes at approximately 𝜆/2, consistent with the 1

𝜆
-smoothness of

the Moreau envelope, which predicts 𝑐 = 𝜆/2.

3.5 OCO Regret Implications
Figure 3 shows online gradient descent regret for all five losses.
Despite inequality violations, nonsmooth losses achieve comparable
gradient norm accumulation to smooth losses, suggesting that the
G*-regret analysis may extend via alternative formulations.

4 DISCUSSION
Our results reveal that the dual-space strong convexity inequal-
ity does not hold in its standard form for nonsmooth losses with
arbitrary subgradient selections. However, two pathways to gen-
eralization exist: (1) Moreau envelope smoothing transforms any
nonsmooth loss into one satisfying the inequality, and (2) the prac-
tical regret behavior suggests that weaker conditions may suffice
for G*-regret bounds.

5 CONCLUSION
We provide the first systematic computational study of the dual-
space strong convexity inequality beyond smooth losses, identifying

∼35% violation rates for nonsmooth losses and establishing Moreau
envelope smoothing as a viable pathway to generalization.
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