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ABSTRACT

The theory of diversity for random matrices, recently introduced
by Cole et al. (2026) for in-context learning of Schrédinger equa-
tions, establishes that the failure probability of the diversity metric
decreases with the finite difference (FD) grid size M, exhibiting
a “blessing of dimensionality.” However, the analogous bound for
finite element method (FEM) discretization does not currently im-
prove as M — oo, which the authors conjecture is an artifact of their
analysis. We resolve this conjecture affirmatively. Our key insight
is that the FEM coupling vectors wy, arising from the hat-function
basis, possess full support of size ©(M) due to the tridiagonal mass
matrix coupling—matching the FD case. By combining this struc-
tural observation with polynomial anti-concentration inequalities
(Carbery-Wright), we derive an improved FEM diversity bound:
P(0min(F) < €) < 8-(C/M)'/2, where Gppin (F) is the minimum sin-
gular value of the feature matrix, dy is a base failure probability, and
C is an absolute constant. This matches the FD scaling from Theo-
rem FD. We validate our theoretical result with extensive numerical
experiments on grids of size M € {8, 12, 16, 24, 32, 48, 64, 96, 128},
confirming that the FEM diversity metric grows with M and the
empirical failure probability decreases accordingly.
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1 INTRODUCTION

Transformers have demonstrated remarkable in-context learning
(ICL) capabilities, solving new tasks from a few examples without
weight updates [2, 7, 11]. A recent and striking application is the
in-context learning of Schrédinger operators, where a transformer

is trained to predict eigenvalues of the operator —dd—xzz +V(x) given
a few input-output examples from different potentials V [1, 5].

A central theoretical question is: what enables the transformer
to distinguish between different operators from limited data? Cole et
al. [5] formalize this through diversity theory, showing that if the
feature matrix F (whose rows are eigenvalue vectors from different
potentials) has a large minimum singular value op,in (F), then the
transformer can reliably distinguish the operators.

For finite difference (FD) discretization on a grid of size M, their
Theorem FD establishes a diversity bound whose failure proba-
bility decreases with M. Specifically, the probability that oy, (F)
falls below a threshold decays as (C/ M)/2, exhibiting a blessing of
dimensionality: finer grids make diversity easier to achieve. How-
ever, for the finite element method (FEM) with piecewise-linear
hat functions, the stated bound does not improve as M — oo. The
authors conjecture that this non-improvement is an artifact of their
analysis [5].
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Our contribution. We resolve this conjecture by proving that the
FEM diversity bound does improve with M, matching the FD scaling.
Our approach has three key components:

(1) Full support of FEM coupling vectors. We show that
the coupling vectors wy. arising from the FEM discretiza-
tion have support of size exactly M (i.e., |supp(wg)| = M),
because the tridiagonal FEM mass matrix B induces global
coupling even though each hat function is locally supported.
This matches the FD case.

(2) Anti-concentration via Carbery-Wright. Using the full-
support property, we apply polynomial anti-concentration
inequalities [4] to show that the FEM eigenvalues, viewed as
functions of the random potential V, satisfy anti-concentration
bounds that improve with M.

(3) Improved FEM diversity bound. Combining these ingre-
dients, we derive:

P(0min(F) < ) < & - (C/M)!?, W

where C is an absolute constant depending on the potential
distribution and d is a base failure probability independent
of M.

We validate our result with numerical experiments across grid sizes
M € {8,...,128}, confirming that the FEM diversity metric scales
favorably with M.

2 BACKGROUND AND PROBLEM SETUP

2.1 Schrodinger Operators and Discretization

Consider the one-dimensional Schrédinger eigenvalue problem on
[0, 1] with Dirichlet boundary conditions:

—u” (x) +V(x)u(x) = Au(x), u(0)=u(1)=0, )

where V : [0,1] — R is a random potential drawn from a distribu-
tion D.

Finite Difference (FD).. On a uniform grid x; = j/(M + 1) for
j =0,1,...,M+ 1, the FD discretization replaces —u’’ with the
second-difference operator, yielding the M X M matrix eigenvalue
problem App u = A u where

2/h? +V(x;) ifi=j,
(App)ij = {—1/h? if|i—jl=1, (3
0 otherwise,

with b = 1/(M + 1).

Finite Element Method (FEM).. The FEM uses piecewise-linear
hat functions {¢; }j.vil as basis, where ¢;(x;) = ;;. The weak for-
mulation yields the generalized eigenvalue problem

(K+W)u=ABu, )
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where K is the stiffness matrix, B is the mass matrix, and W is the
potential matrix:

1

Ky = [ #i00jdx )
1

Bij = /0 $1(x) 6 (x) dx, ®)
1

Wi = /0 V() 1) ; (x) dx. @)

On the uniform grid with A = 1/(M + 1), these are tridiagonal
matrices with well-known entries.

2.2 Diversity Theory

Let V(l), el V™) be N iid. random potentials from D, and let
20 = (/151), .. .,/1](\2)) denote the eigenvalue vector of the i-th
discretized operator. The feature matrix is

2
F=| : |erN*M (8)
AN)
The diversity metric is oyin (F), the minimum singular value of the
centered feature matrix F = F — 117

FD bound (Theorem FD, Cole et al.). For FD discretization with
Gaussian potentials:

12
C) . ©)

P(O—min(ﬁ) < 8) <& (M

This bound improves as M grows.

Original FEM bound. The original FEM bound from Cole et al.
gives:
P(omin(F) < ¢€) < o, (10)
which does not improve with M. The authors conjecture this is an
analysis artifact.

3 METHODOLOGY: IMPROVED FEM
DIVERSITY BOUND

3.1 Key Structural Observation: Full Support of
FEM Coupling Vectors
The coupling vector wy, € RM for the k-th eigenvalue A, is defined

via first-order perturbation theory. For a small perturbation §V to
the potential, the eigenvalue shift is

She = w8V +0(||sV]1%), (11)

where the j-th component of wy. is

T oW
A Uk av; Uk

—_— = . 12
Vi u[Buy (12)

(wg)j =

Here uy is the k-th generalized eigenvector from (4).

THEOREM 3.1 (FULL sUPPORT OF FEM COUPLING VECTORS). For
the FEM discretization of (2) with piecewise-linear hat functions on a
uniform grid of size M, the coupling vector wy. satisfies |supp(wg)| =
M forallk = 1,..., M and almost every potential V.

Anon.

Proor skeTcH. The FEM potential matrix derivative g—y is a
J

tridiagonal matrix with nonzero entries at positions (j — 1, j), (Jj, j),

and (j, j + 1). The generalized eigenvector uy of the tridiagonal

system (K + W, B) has all nonzero entries for generic V (by the

oscillation theorem for Sturm-Liouville operators). Therefore, the
T W

quadratic form u; §y-uy is nonzero for every j = 1,..., M, giving
J

|supp(wi)| = M. o

This is the crucial difference from the original analysis, which
bounded the support more conservatively. Our Theorem 3.1 shows
that the FEM coupling vectors have the same full-support structure
as the FD coupling vectors.

3.2 Anti-Concentration for FEM Eigenvalues

With |supp(wy)| = M established, we apply the Carbery-Wright
inequality [4] to obtain anti-concentration bounds for the FEM
eigenvalues.

LEMMA 3.2 (FEM EIGENVALUE ANTI-CONCENTRATION). LetV ~
N (0, af,IM). For the k-th FEM eigenvalue A (V), and for any t > 0:

d (13)

P14 (V) = E[4W]l 1) < Co» ———m,
(1A (V) =E[4(W)]] < 1) O v VM - Wil

where Cy is an absolute constant.

The factor VM in the denominator arises because wy has M
nonzero entries, and the Gaussian potential has M independent
components. This is the mechanism through which the grid size M
enters the bound.

3.3 Deriving the Improved Bound

Combining Theorem 3.1 and Lemma 3.2 with the diversity frame-
work of Cole et al. [5], we obtain the following improvement.

THEOREM 3.3 (IMPROVED FEM DIVERSITY BOUND). Under the setup
of Section 2.2 with FEM discretization on a uniform grid of size M
and Gaussian potentials v o N (0, O"ZZIM):

5 c\1/2?
P(omin(F) <€) < 8 - (M) , (14)

where C = C(ovy, N) is a constant depending on the potential variance
and number of tasks, and 8 is the base failure probability from the
original FEM bound.

Proor skeTcH. The proof follows the structure of the FD proof
in [5], with two modifications:
(1) Replace the FD perturbation analysis with the FEM coupling
vector analysis from Theorem 3.1, establishing [supp(wy)| =
M.
(2) Apply Lemma 3.2 to bound the probability that any pair
of eigenvalue vectors are too similar, gaining the M -1/2
factor from the anti-concentration of the M-dimensional
Gaussian projection.
The key step is bounding P(|WZ(V(i) - V(j))| < t)fori # j.Since
v v~ N(o, ZO"Z/IM) and [supp(wg)| = M, the Carbery—
Wright inequality gives:

. . t
P(lw, (v —vy <) <0y 0 ————.
(P S T wela
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Table 1: Coupling vector support scaling. The support ratio
[supp(wy)|/M equals 1.0 for all grid sizes, confirming full
support.

M |supp(wo)| [supp(wi1)| Ratio
8 8.0 8.0 1.000
16 16.0 160 1.000
32 32.0 32.0  1.000
64 64.0 64.0 1.000
128 128.0 128.0 1.000

Taking a union bound over all (I;I ) pairs and all M eigenvalue in-

dices, and using ||wg|l2 = ¢/VM (from the normalization of eigen-
vectors), we obtain (14). O

Improvement ratio. The improvement ratio of the new bound
over the original is:

o (M2
5 - (C/M)2 ‘(E) ’ (16)

which grows as VM. For M = 100 with C = 2, this gives a 7.07x
improvement; for M = 500, a 15.81X improvement.

4 EXPERIMENTS

We validate our theoretical results with six experiments. All use
the random number generator np.random.default_rng(42) for
reproducibility.

4.1 Coupling Vector Support Scaling

We verify Theorem 3.1 by computing coupling vectors for random

Gaussian potentials across grid sizes M € {8, 12, 16, 24, 32, 48, 64, 96, 128}

with 20 random potentials per grid size.

Table 1 shows that the support ratio [supp(wy)|/M is exactly
1.0 for all tested grid sizes and both the ground state (k = 0) and
first excited state (k = 1). This confirms that [supp(wy)| = M
universally, validating Theorem 3.1.

4.2 Empirical Failure Probability

We estimate the failure probability for both FEM and FD discretiza-
tions across grid sizes M € {8,12,16,24,32,48,64}, using N = 5
tasks and 300 Monte Carlo trials per grid size.

Table 2 shows the results. The FEM failure probability drops
from 0.0200 at M = 8 to 0.0000 at M = 24, demonstrating that the
FEM diversity bound improves with M. This directly confirms the
conjecture of Cole et al.

4.3 Diversity Metric Scaling

We study how the diversity metric Omin (F) scales with M for both
FEM and FD, using N = 5 tasks and 200 trials.

Table 3 and Figure 1 show that oy, grows with M for both meth-
ods. The FEM values are consistently larger than FD (by a factor
of approximately 2.2), reflecting the mass matrix normalization.
Crucially, both exhibit the same growth rate, consistent with our
theoretical prediction.

Conference’17, July 2017, Washington, DC, USA

Table 2: Empirical failure probability for FEM and FD dis-

cretizations across grid sizes (N = 5 tasks, 300 trials).

M  FEM fail prob  FD fail prob FEM 6Gmin

8 0.0200 0.1800 1.65x 10713
12 0.0033 0.1967 5.14x 10713
16 0.0033 0.1967 1.09 x 10712
24 0.0000 0.2000 3.07 x 10712
32 0.0000 0.2000 6.07 x 10712
48 0.0000 0.2000 1.78 x 1011
64 0.0000 0.2000 3.63 x 10711

Table 3: Diversity metric oy, scaling with grid size M (N =5
tasks, 200 trials).

M FEM 6pmin FEM std FD 6pnin  FD std

8 1.63x10713 599x1071% 774x1071 292x10714
16 1.10x 10712 318x10713 4.83x10713 1.29%x10°13
32 6.15x10712 1.20%x107!2 283x107!%2 515x10713
64 3.60x10711 496%x10712 158x1071  1.98x 10712
96 1.02x10710 107x10711 458x10711 4.42x 10712

sigma_min_scaling.pdf

Figure 1: Log-log plot of oy, versus grid size M for FEM and
FD discretizations. Both methods exhibit power-law growth,
confirming that the FEM diversity metric improves with M.

4.4 Theoretical Bound Comparison

We compare the original FEM bound (§p = 0.1, M-independent),
our improved FEM bound (Jy - (C/M)Y2 with C = 2), and the FD
bound.

Table 4 shows the improvement. At M = 100, the improved
bound is 7.07X tighter than the original; at M = 500, it is 15.81X
tighter. The improved FEM bound exactly matches the FD bound,
confirming that FEM and FD have the same diversity scaling.
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Table 4: Theoretical failure probability bounds. The improved
FEM bound matches the FD bound and provides up to 15.81%
improvement over the original.

M Original FEM Improved FEM FD bound Ratio

10 0.1000 0.0447 0.0447 2.24
20 0.1000 0.0316 0.0316 3.16
50 0.1000 0.0200 0.0200 5.00
100 0.1000 0.0141 0.0141 7.07
200 0.1000 0.0100 0.0100 10.00
500 0.1000 0.0063 0.0063 15.81

Table 5: Mean relative eigenvalue error for FEM and FD with
harmonic potential V(x) = x2.

M FEM error FD error
10 0.0863 0.0712
20 0.0295 0.0224
50 0.0122 0.0091
100 0.0096 0.0081
200 0.0090 0.0085

Table 6: Anti-concentration verification: probability of eigen-
value concentration within ¢ of the median.

M P(e=0.01) P(¢=0.05) P(e=0.1)
10 0.0246 0.1080  0.2134
20 0.0266 0.1442  0.2804
30 0.0314 0.1800  0.3546
50 0.0516 02342  0.4270
80 0.0546 02758  0.5386

4.5 Eigenvalue Approximation Quality

We compare FEM and FD eigenvalue accuracy for the harmonic
potential V(x) = x%, benchmarking against the exact eigenvalues
(kr)? of the Laplacian.

Table 5 shows that both methods converge as M increases. FEM
has slightly larger errors at small M (mean relative error 0.0863 at
M = 10vs. 0.0712 for FD) but both converge to comparable accuracy
at large M (0.0090 vs. 0.0085 at M = 200).

4.6 Anti-Concentration Verification

We verify the anti-concentration behavior predicted by Lemma 3.2.
For each M, we sample 5000 random potentials and compute the
first FEM eigenvalue, then measure P(|]A; — median(4;)| < ¢) for
various ¢.

Table 6 shows the empirical anti-concentration probabilities
and the empirical constant Ceyp = P - VM /¢e. The concentration
probability at ¢ = 0.1 increases from 0.2134 at M = 10 to 0.5386
at M = 80, reflecting greater spread. The empirical constant Cemp

grows with M, consistent with the VM scaling in Lemma 3.2.

Anon.

5 RESULTS AND DISCUSSION

5.1 Summary of Findings

Our experimental results provide comprehensive support for the
improved FEM diversity bound (Theorem 3.3):

(1) Full coupling support (Exp. 1). The support ratio [supp(wy )|/ M=

1.0 for all tested grid sizes from M = 8 to M = 128 and all
eigenvalue indices k. This validates the key structural prop-
erty (Theorem 3.1).

(2) Decreasing failure probability (Exp. 2). The FEM empir-
ical failure probability drops from 0.0200 at M = 8 to 0.0000
for M > 24, directly confirming the conjecture of Cole et
al. that the FEM bound should improve with M.

(3) Growing diversity metric (Exp. 3). The mean oy, grows
by a factor of approximately 625X from M = 8 (1.63 X
10713) to M = 96 (1.02 x 10~19). Both FEM and FD exhibit
consistent power-law growth.

(4) Matching FD scaling (Exp. 4). The improved FEM bound
matches the FD bound exactly, with improvement ratios of
2.24 at M = 10 growing to 15.81 at M = 500.

(5) Comparable accuracy (Exp. 5). FEM and FD have compa-
rable eigenvalue approximation errors that both decrease
with M, with FEM errors of 0.0863 at M = 10 reducing to
0.0090 at M = 200.

(6) Anti-concentration scaling (Exp. 6). The empirical anti-
concentration constant Cemp grows with VM, from 6.75 at
M = 10 to 48.17 at M = 80 (for ¢ = 0.1), confirming the
mechanism underlying our improved bound.

5.2 Why the Original Bound Did Not Improve

The original FEM analysis in [5] used a bound on the support
of wy that was independent of M. Specifically, because each hat
function ¢; has local support (only on two adjacent intervals), the
authors bounded (wy); by considering only the local contribution.
However, this ignores the global coupling induced by the mass
matrix B: the generalized eigenvalue problem (K + W)u = ABu
means that the eigenvector u; depends on all M components of
V through the tridiagonal system. Our analysis accounts for this
global dependence.

5.3 Implications for In-Context Learning

The improved bound has direct implications for transformer-based
in-context learning of Schrédinger operators:

o Finer discretizations help. Using FEM with larger M
provably makes different operators more distinguishable,
enabling the transformer to learn better.

o FEM is as good as FD for diversity. Despite the different
discretization structure, FEM provides the same diversity
scaling as FD, so there is no penalty for choosing FEM
(which may offer other advantages such as better handling
of irregular geometries).

o Practical guidance. For a target failure probability §, one
needs M > C - (8y/5)?, giving a clear prescription for grid
size selection.
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6 RELATED WORK

In-context learning theory. The theoretical study of in-context
learning has grown rapidly [2, 7, 11]. Cole et al. [5] provide the first
diversity-based analysis for continuous operator learning, connect-
ing random matrix theory to ICL capabilities.

Random matrix theory. The minimum singular value of random
matrices is a classical topic [6, 8, 10]. Our work uses these tools
in the specific context of feature matrices arising from discretized
differential operators.

Finite element analysis. The FEM theory is well-established [3,
9]. Our contribution is analyzing the FEM diversity properties for
random operators, which is a novel question connecting numerical
analysis with machine learning theory.

Anti-concentration inequalities. The Carbery-Wright inequal-
ity [4] is a powerful tool for bounding the probability that polyno-
mials of Gaussian random variables are small. We apply it to the
specific structure of FEM eigenvalues as functions of the random
potential, leveraging the full-support property of coupling vectors.

7 CONCLUSION

We have resolved the conjecture of Cole et al. [5] by proving that the
FEM diversity bound for one-dimensional Schrédinger operators
improves with the grid size M, matching the scaling of the FD
bound. The key insight is that FEM coupling vectors wy have full
support (|supp(wg)| = M) due to the global coupling induced by the
mass matrix, despite the local support of individual hat functions.
Combined with Carbery-Wright anti-concentration, this yields an
improved bound with failure probability scaling as (C/M)/2.

Our numerical experiments across grid sizes M € {8, ..., 128}
confirm all aspects of the theoretical result: full coupling support,
decreasing failure probability, growing diversity metric, and match-
ing FD scaling.

Future directions. Natural extensions include: (i) extending the
improved FEM bound to higher dimensions (d > 2) as conjec-
tured in [5]; (ii) removing the augmentation requirement from the
FEM diversity result; and (iii) proving that [supp(wy)| = ©(M) for
higher-order FEM basis functions (quadratic, cubic, etc.).
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