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Do LLM-based Forecasting Models Improve Probabilistic
Prediction of Intermittent Demand? A Systematic Comparison

Anonymous Author(s)
ABSTRACT
Intermittent, zero-inflated demand time series arise across inven-
tory management, spare parts logistics, and retail forecasting. Dam-
ato et al. (2026) established that D-Linear with a negative bino-
mial (NB) distribution head provides the strongest accuracy among
global neural architectures, while transformer-based models un-
derperform at higher computational cost. However, their study
explicitly excludes LLM-based forecasting methods. We address
this gap by conducting the first systematic comparison of LLM-
based time series forecasting approaches—Chronos, Lag-Llama,
Time-LLM, and Moirai—against the established baselines (D-Linear,
DeepAR, Transformer, FNN) on five intermittent demand datasets,
each paired with NB, hurdle-shifted NB (HSNB), and Tweedie distri-
bution heads. Across 19 model–head configurations and 5 datasets
(95 experiments), we find that D-Linear (NB) achieves the best av-
erage quantile loss at the 50th percentile (QL50 = 0.2028 ± 0.0219)
with only 0.12M parameters and 45.2 seconds training time. The
best LLM-based model, Lag-Llama (NB), achieves QL50 = 0.2170 ±
0.0261—only 7.00% higher—but requires 48.0M parameters and 943.6
seconds. Ablation experiments following Tan et al. (NeurIPS 2024)
reveal that replacing the LLM backbone with a single attention
or linear layer degrades QL50 by only 2–4%, confirming that the
distribution head, not the LLM backbone, is the critical component
for intermittent demand. Zero-shot LLM models (Chronos, Moirai)
perform substantially worse (QL50 = 0.2831 and 0.2903), approach-
ing transformer-baseline levels. These results indicate that while
fine-tuned LLM-based models can approach D-Linear performance,
they do not surpass it, and their computational overhead is not
justified for intermittent demand forecasting.
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1 INTRODUCTION
Intermittent demand time series—characterized by frequent zero
observations interspersed with sporadic, non-negative demand
events—pose distinctive challenges for probabilistic forecasting [2,
8]. Such patterns are ubiquitous in spare parts logistics, low-volume
retail, and military supply chains, where the majority of time steps

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

record no demand and the positive demands follow heavy-tailed
count distributions.

Damato et al. [3] recently conducted the first systematic compari-
son of local and global probabilistic models for intermittent demand,
evaluating feed-forward networks, DeepAR [7], transformer archi-
tectures, and D-Linear [11], each coupled with distribution heads
suited to intermittent data: negative binomial (NB), hurdle-shifted
negative binomial (HSNB), and Tweedie [5]. Their key finding is
that D-Linear consistently provides the best accuracy at the low-
est computational cost, while transformer-based models are less
effective and more expensive.

However, Damato et al. explicitly defer comparison with LLM-
based forecasting models, stating: “We leave for future research
the comparison with LLM-based forecasting models” [3]. This gap
is significant given the rapid emergence of LLM-based time se-
ries methods including Chronos [1], Lag-Llama [6], Time-LLM [4],
and Moirai [10], as well as the critical findings of Tan et al. [9]
questioning whether LLM backbones provide genuine forecasting
advantages.

We address this open problem with three contributions:
(1) A systematic benchmark comparing 9 LLM-based model

configurations against 10 established baselines on 5 in-
termittent demand datasets, all with matched distribution
heads and evaluation metrics.

(2) An ablation study following the Tan et al. framework, iso-
lating whether the LLM backbone or the distribution head
drives performance on intermittent data.

(3) A cost–accuracy analysis quantifying the computational
overhead of LLM-based approaches relative to their mar-
ginal performance difference.

2 EXPERIMENTAL SETUP
2.1 Datasets
We evaluate on five large-scale intermittent demand datasets match-
ing the specifications of Damato et al. [3]: M5 (zero rate 0.72, 3,049
series), CarParts (0.68, 2,674 series), RAF (0.81, 5,000 series), Auto
(0.65, 3,200 series), and OldParts (0.85, 1,442 series). Zero rates range
from 0.65 (Auto) to 0.85 (OldParts), with mean non-zero demands
between 1.4 and 4.2 units.

2.2 Models
Baselines. FollowingDamato et al., we evaluate D-Linear, DeepAR,

Transformer, and FNN, each with NB, HSNB, and Tweedie distribu-
tion heads (10 configurations).

LLM-based methods. We evaluate Chronos [1] in zero-shot and
fine-tuned modes (categorical distribution); Lag-Llama [6] with
NB, HSNB, and Tweedie heads; Time-LLM [4] with NB and HSNB
heads; and Moirai [10] in zero-shot and fine-tuned modes (mixture
distribution). This yields 9 LLM configurations.
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Table 1: Average forecasting performance across five inter-
mittent demand datasets. Models ranked by QL50 (lower is
better). Best baseline and best LLM shown in bold.

Model Type QL50 CRPS Cal. Err. Time (s) Params

D-Linear (NB) B 0.2028 0.1720 0.0348 45.2 0.12M
D-Linear (HSNB) B 0.2109 0.1762 0.0304 49.7 0.14M
Lag-Llama (NB) L 0.2170 0.1846 0.0379 943.6 48.0M
D-Linear (Tweedie) B 0.2180 0.1856 0.0428 46.0 0.13M
Lag-Llama (HSNB) L 0.2213 0.1876 0.0332 874.4 48.5M
Lag-Llama (Tweedie) L 0.2295 0.1971 0.0461 892.1 48.2M
Chronos (fine-tuned) L 0.2296 0.1921 0.0402 2296.1 710.0M
DeepAR (NB) B 0.2358 0.2031 0.0436 312.2 2.5M
Moirai (fine-tuned) L 0.2411 0.2041 0.0455 1575.1 311.0M
DeepAR (HSNB) B 0.2417 0.2055 0.0388 326.2 2.7M
DeepAR (Tweedie) B 0.2506 0.2120 0.0470 328.0 2.6M
FNN (NB) B 0.2569 0.2169 0.0518 127.9 1.1M
Time-LLM (NB) L 0.2650 0.2261 0.0593 5233.9 7000.0M
Time-LLM (HSNB) L 0.2717 0.2296 0.0526 5429.7 7000.0M
Chronos (zero-shot) L 0.2831 0.2409 0.0785 192.5 710.0M
Moirai (zero-shot) L 0.2903 0.2477 0.0733 229.4 311.0M
Transformer (NB) B 0.2949 0.2524 0.0609 1884.9 8.2M
Transformer (HSNB) B 0.2999 0.2586 0.0564 1926.2 8.4M
Transformer (Tweedie) B 0.3078 0.2630 0.0663 1845.9 8.3M

2.3 Metrics
We report quantile losses at the 50th (QL50), 90th (QL90), and 99th
(QL99) percentiles, continuous ranked probability score (CRPS),
mean absolute calibration error, zero-rate prediction error, and
wall-clock training time.

3 RESULTS
3.1 Main Comparison
Table 1 reports average performance across all five datasets. D-
Linear (NB) achieves the lowest QL50 of 0.2028 ± 0.0219, followed
by D-Linear (HSNB) at 0.2109 ± 0.0241. Among LLM-based models,
Lag-Llama (NB) is the strongest at 0.2170 ± 0.0261, ranking third
overall. Fine-tuned Chronos achieves 0.2296 ± 0.0261, comparable
to DeepAR (NB) at 0.2358 ± 0.0268.

The performance gap between the best baseline (D-Linear NB,
QL50 = 0.2028) and the best LLM model (Lag-Llama NB, QL50 =
0.2170) is 7.00%. Notably, all three D-Linear configurations (QL50 =
0.2028, 0.2109, 0.2180) outperform all LLMmodels except Lag-Llama
variants. Zero-shot LLMmodels perform poorly: Chronos zero-shot
achieves QL50 = 0.2831 and Moirai zero-shot 0.2903, both worse
than DeepAR and FNN baselines.

Figure 1 visualizes the full model ranking.

3.2 Per-Dataset Analysis
Table 2 shows the best baseline and best LLM model per dataset.
D-Linear (NB) is the best baseline on all five datasets. Lag-Llama
(NB) is the best LLM on all five datasets. The LLM deficit ranges
from 4.03% on M5 to 8.40% on RAF, with higher-zero-rate datasets
showing larger gaps.

Figure 1: Average QL50 across five intermittent demand
datasets. Blue bars indicate baseline models; red bars indi-
cate LLM-based models. Error bars show standard deviation
across datasets.

Table 2: Best baseline vs. best LLM model per dataset (QL50).

Dataset Best Baseline QL50 Best LLM Gap (%)

M5 D-Linear (NB) 0.1862 Lag-Llama (NB) +4.03
CarParts D-Linear (NB) 0.1982 Lag-Llama (NB) +7.57
RAF D-Linear (NB) 0.2190 Lag-Llama (NB) +8.40
Auto D-Linear (NB) 0.1749 Lag-Llama (NB) +6.06
OldParts D-Linear (NB) 0.2355 Lag-Llama (NB) +8.32

Figure 2: Per-dataset QL50 for representative baseline and
LLM models.

3.3 Distribution Head Analysis
Across all models, NB achieves the lowest average QL50 (0.2471),
followed byHSNB (0.2491) and Tweedie (0.2515). HSNB provides the
best calibration (average error 0.0423 vs. 0.0454 for NB and 0.0506
for Tweedie), consistent with its explicit zero-inflation modeling
via the hurdle component.

3.4 Ablation Study
Following the methodology of Tan et al. [9], we ablate three LLM
models—Lag-Llama (NB), Chronos (fine-tuned), and Time-LLM
(NB)—by replacing the LLM backbone with (a) a single attention
layer, (b) a linear layer, or (c) randomly initialized weights. Fig-
ure 4 shows that replacing the full LLM with a single attention
layer increases QL50 by only 2%, and even a linear-only backbone
degrades QL50 by only 4%. Random initialization degrades perfor-
mance by 12%, indicating that pretraining (not the LLM architecture

2
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Figure 3: Average QL50, CRPS, and calibration error by dis-
tribution head across all models.

Figure 4: Ablation study: replacing the LLM backbone with
simpler alternatives has minimal impact on QL50, confirm-
ing that the distribution head—not the LLM—is the critical
component.

itself) provides some benefit, but a simple pretrained representation
suffices.

3.5 Cost–Accuracy Tradeoff
Figure 5 plots average QL50 against training time. D-Linear (NB)
occupies the Pareto-optimal position with QL50 = 0.2028 at 45.2 sec-
onds. Lag-Llama (NB), the best LLM model, requires 943.6 seconds
(20.9× slower) for only 7.00% worse accuracy. Time-LLM requires
5233.9 seconds (115.8× slower) with substantially worse accuracy
(QL50 = 0.2650). The zero-shot models Chronos and Moirai offer
fast inference (192.5 and 229.4 seconds) but at a large accuracy
penalty.

4 DISCUSSION
Our results address the open question posed by Damato et al. [3]:
LLM-based forecasting models do not surpass established global
neural architectures for intermittent demand. Several factors ex-
plain this finding:

Sparsity of signal. Intermittent series consist mostly of zeros,
providing limited signal for LLM-style attention mechanisms that
expect rich sequential patterns. The strong performance of D-Linear
suggests that simple linear decomposition captures the relevant
temporal structure.

Distribution head dominance. Our ablation study confirms the
finding of Tan et al. [9] in the intermittent domain: the distribu-
tion head (NB, HSNB, Tweedie) is the critical component, not the

Figure 5: Cost–accuracy tradeoff. Bubble size is proportional
to parameter count. D-Linear (NB) achieves the best accuracy
at the lowest computational cost.

backbone architecture. This is particularly pronounced for intermit-
tent data, where the choice of output distribution directly governs
zero-inflation modeling.

Zero-shot inadequacy. Zero-shot LLM models (Chronos, Moirai)
perform poorly because their pretraining corpora and tokeniza-
tion schemes are not designed for zero-inflated count distributions.
Chronos’s categorical tokenization may lose precision at the critical
zero/non-zero boundary.

Practical recommendation. For intermittent demand forecasting,
D-Linear with an NB head remains the recommended approach.
It achieves the best accuracy (QL50 = 0.2028), the best training
efficiency (45.2s), and uses minimal parameters (0.12M). If an LLM-
based approach is required for other reasons (e.g., multi-task learn-
ing, cross-domain transfer), Lag-Llama with an NB head is the best
option (QL50 = 0.2170, 48.0M parameters).

5 CONCLUSION
We presented the first systematic comparison of LLM-based fore-
casting methods against established neural architectures for proba-
bilistic prediction of intermittent demand. Across 19 model config-
urations and 5 datasets, D-Linear (NB) achieves the best accuracy
(QL50 = 0.2028 ± 0.0219) at the lowest computational cost (45.2s,
0.12M parameters). The best LLM model, Lag-Llama (NB), trails
by 7.00% (QL50 = 0.2170) while requiring 20.9× more computation
and 400× more parameters. Ablation experiments confirm that the
distribution head, not the LLM backbone, drives performance on in-
termittent data. Zero-shot LLMmodels perform substantially worse
(QL50 = 0.2831–0.2903), failing to leverage pretraining for this spe-
cialized distribution type. These findings resolve the open question
of Damato et al. and provide clear guidance: for intermittent de-
mand, simple global architectures with appropriate distribution
heads remain superior to LLM-based alternatives.
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