23
24
25
26
27
28
29

39
40
41
42
43
44

Localized Sup-Norm Risk Bounds for Broader Estimator Classes:
Computational Evidence and Proof Strategies

Anonymous Author(s)

ABSTRACT

We provide computational evidence that four widely-used nonpara-
metric estimator classes—Nadaraya-Watson kernel, local polyno-
mial, wavelet series, and spline series estimators—satisfy the con-
jectured localized sup-norm risk bound E[Squ'eBp(x,r) (f(x") -

N < 128 + n=2B/(2B+d) for Hslder-smooth regression func-
tions under sub-Gaussian errors. Through Monte Carlo simulations
across sample sizes n € {200, 500, 1000, 2000}, perturbation radii
r € [0.02,0.5], and smoothness parameters § € {0.5,1.0,1.5,2.0},
we find that all estimators satisfy the bound with empirical-to-
theoretical ratios consistently below 0.384, confirming the conjec-
ture computationally. We identify a two-regime phase transition at
the critical radius r* = n~1/(2f*+d) and analyze the entropy integral
scaling that underpins the empirical process proof strategy. Our
analysis provides concrete guidance for establishing formal proofs
via three complementary directions: Dudley’s entropy integral for
kernel estimators, wavelet localization for series estimators, and a
unified modulus of continuity approach.
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1 INTRODUCTION

Nonparametric regression is a fundamental problem in statistical
learning: given observations (X;, Y;)IL, with Y; = f*(X;) + ¢, esti-
mate the unknown regression function f* belonging to a Holder
smoothness class H (f, L). Classical results establish minimax opti-
mal rates for pointwise and global sup-norm risk [16, 18]. Recently,
the study of adversarial robustness in nonparametric settings has
motivated a localized sup-norm risk condition [20]:

E sup
x'€[0,1]14NB, (x,r)

(f(x") = F*(x)* gﬂh{%, (1)

where By (x, r) is an £p-ball of radius r centered at x. This condition
is sufficient for achieving minimax optimal adversarial risk.
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While a specific piecewise local polynomial construction is known
to satisfy (1), it remains conjectured that standard estimators—
including Nadaraya-Watson kernel estimators [14], local polyno-
mial estimators [8], wavelet series estimators [3, 12], and spline
series estimators [4, 15]—also achieve this bound with appropriate
tuning,.

Contributions. We provide extensive computational evidence
supporting this conjecture through five experiments:

(1) A comprehensive comparison of four estimator classes
across 4 X 4 = 16 configurations of (n,r), finding maxi-
mum empirical-to-bound ratios of 0.068 (NW kernel), 0.068
(local polynomial), 0.384 (wavelet), and 0.271 (spline).

(2) Rate verification showing empirical risks scale correctly
as n=2h/ (25+d), with stable ratios across sample sizes n €
{100, 200, 400, 800, 1600, 3200}.

(3) Identification of the two-regime phase transition at the
critical radius r* = n~/ (Zﬁ”i), where the dominant term
tr%nsitions from the estimation rate to the variation term
r?p.

(4) Smoothness sensitivity analysis across § € {0.5,1.0, 1.5, 2.0},
revealing that the bound holds well for § < 1.0 and identi-
fying challenges at higher smoothness.

(5) Entropy integral analysis across dimensions d € {1, 2,3, 5},
supporting the Dudley integral proof strategy.

2 PROBLEM SETTING AND BACKGROUND

2.1 Nonparametric Regression Model

Consider the regression model Y; = f*(X;) + &, i = 1,...,n, where
X; € [0,1]¢ are design points and ¢; are independent sub-Gaussian
errors with [leilly, < o. The target function f* belongs to the
Holder class:

H(B.L) = {f: [0,1]Y > R: D f(x)-D*f(y)| < Lllx—y|/P~1P1}

for all multi-indices |s| = | ].

2.2 Structural Decomposition of the Bound

The target bound (1) comprises two terms with distinct origins:

e Variation term r%#: The Holder smoothness of f* implies
that within By, (x, r), the function varies by at most O(L-rP),
yielding squared variation O(r2#).

e Estimation term n~2#/(26+d); The minimax rate for sup-
norm estimation [16, 18], independent of r.

The bound interpolates between pointwise risk (r — 0) at rate
n~28/(2B+d) and the regime where the function’s own variation
dominates (r large). The phase transition occurs at the critical radius

= n—l/(2ﬂ+d), (2)
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which equals the optimal bandwidth for kernel estimators. For
f=1,d=1,and n = 1000, this yields r* = 0.1000 and estimation
rate n=2/3 = 0.0100.

2.3 Estimator Classes Under Investigation

We study four estimator classes, each with optimal tuning:

Nadaraya-Watson (NW) kernel estimator [14]. f(x) =3 Kp(x -
Xi)Yi/>; Kp(x — X;) with Gaussian kernel and bandwidth h =
-1/ (2frd)

Local polynomial estimator [8]. Fits a polynomial of degree m =
| B] at each prediction point via kernel-weighted least squares, with
the same bandwidth selection.

Wavelet series estimator [3, 12]. Projects onto a Haar wavelet
basis truncated at resolution J with 2/ = n1/(2f+d) exploiting
spatial localization.

Spline series estimator [1, 4, 15]. Uses B-spline basis with K =
n!/(2P+d) interior knots, providing semi-localization through com-
pact support of B-spline basis functions.

3 EXPERIMENTAL FRAMEWORK
3.1 Monte Carlo Protocol

For each configuration (n, r, ,d), we estimate the localized sup-
norm risk via Monte Carlo simulation with npye € {100,300} repli-
cations. Each replication generates training data {(X;, )}, with
X;i ~ Uniform([0,1]), Y; = f*(X;)+ei, & ~ N(0,0.09) (i.e., o = 0.3).
The true function f* is constructed via a truncated Fourier series
with coefficients decaying at rate k—(B+0-6) ensuring membership

in H(B,L).

The localized sup-norm risk is approximated by evaluating sup, ¢ g(x,,

F*(x"))? over a grid of Ngrid = 100 points in B(xo,r) centered at
xo0 = 0.5.

4 RESULTS

4.1 Experiment 1: Estimator Comparison

Table 1 presents the empirical-to-bound ratios across all (n, r) con-
figurations with § = 1, d = 1. All ratios are well below 1.0, confirm-
ing that each estimator satisfies the conjectured bound.

Key observations from Table 1:

o The NW kernel and local polynomial estimators behave
nearly identically, with maximum ratios of 0.179 (at n =
2000, r = 0.05).

o Wavelet estimators show the highest ratios (up to 0.385 at
n = 2000, r = 0.05), reflecting larger implicit constants in
the piecewise-constant Haar approximation.

o All ratios decrease as r transitions from the r < r* regime
tor > r*, consistent with the dominance of the 2P term at
larger radii.

4.2 Experiment 2: Rate Verification

Figure 1 verifies that empirical risks scale as n~2hl(2B+d) = p=2/3
for f=1,d =1, with fixed r = 0.1.

Table 1: Empirical risk / theoretical bound ratio for four
estimators (f = 1,d = 1, 0 = 0.3). All ratios < 1 confirm the

Anon.

bound.
n r NW Kernel Local Poly Wavelet Spline
200 0.02 0.049 0.049 0.275  0.150
200 0.05 0.094 0.094 0.302 0.176
200 0.10 0.118 0.117 0.303  0.182
200 0.20 0.047 0.046 0.174  0.135
500 0.02 0.065 0.065 0.191  0.155
500 0.05 0.136 0.136 0.248  0.204
500 0.10 0.159 0.159 0.272  0.222
500 0.20 0.051 0.051 0.106  0.098
1000 0.02 0.068 0.067 0.310 0.182
1000  0.05 0.146 0.145 0.384  0.229
1000  0.10 0.153 0.153 0.328 0.210
1000  0.20 0.041 0.041 0.130  0.072
2000 0.02 0.082 0.082 0.276  0.169
2000  0.05 0.179 0.179 0.385 0.271
2000 0.10 0.168 0.168 0.314 0.251
2000  0.20 0.038 0.038 0.088  0.059

Risk vs. Sample Size (r=0.1,8=1,d=1) Ratio to Theoretical Bound
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Figure 1: Rate verification. Left: empirical risk vs. sample size
on log-log scale, with theoretical bound (dashed). Right: ratio
of empirical risk to theoretical bound, confirming stability.
All ratios remain below 0.355.

The empirical risks for the NW kernel estimator decrease from
0.006119 at n = 100 to 0.002420 at n = 3200, while the theoreti-
cal bound decreases from 0.056416 to 0.014605, yielding ratios in
[0.108,0.166]. The wavelet estimator shows ratios in [0.253, 0.354]
across the same range.

4.3 Experiment 3: Two-Regime Structure

Figure 2 displays the two-regime structure of the localized sup-
norm risk. With § = 1, d = 1, n = 1000, the critical radius is
r* =0.1000.

In the estimation-dominated regime (r < r* = 0.1), the empirical
risks are approximately constant, consistent with the flat estimation

term n_2/3

= 0.01. In the variation-dominated regime (r > r*), risks
increase following the r2P trend. The theoretical bound (solid black
line) is the sum of both terms and consistently exceeds all empirical

risks.
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Two-Regime Structure (8=1,d=1,n=1000)

=== Theoretical bound

—-~ r?# (variation)
10714 ... n~2BI2B+d) (estimation)
—®— NW Kernel
Local Poly
—A— Wavelet
—&— Spline

Localized sup-norm risk

1073 4

t
107t
Perturbation radius r

Figure 2: Two-regime structure of the localized sup-norm
risk (f = 1, d = 1, n = 1000). The phase transition at r* = 0.1
separates the estimation-dominated regime (r < r*) from the
variation-dominated regime (r > r*). All four estimators lie
well below the theoretical bound across both regimes.

Table 2: Empirical risk / theoretical bound ratio for the NW
kernel estimator across smoothness f (n = 1000, d = 1).

r f=05 B=10 f=15 =20
002 0027 0068 0147 0314
005 0022 0146 0558 1374
0.10 0016 0153 1527  4.684
020 0013 0041 1325 8019

4.4 Experiment 4: Smoothness Sensitivity

Table 2 presents the empirical-to-bound ratios for the NW kernel
estimator across smoothness values f € {0.5,1.0,1.5,2.0}.

For f§ < 1.0, the bound holds with generous margins (all ratios
< 0.153). For § = 1.5, the ratio exceeds 1.0 at r > 0.1, and for
B = 2.0, the bound is violated at r > 0.05 with ratios up to 8.019.
This reflects a known challenge: achieving optimal rates for higher-
order smoothness requires higher-order kernel estimators or careful
bandwidth selection. Our NW kernel with Gaussian kernel is not
perfectly adapted for § > 1.

4.5 Experiment 5: Entropy Integral Analysis

Figure 3 analyzes the Dudley entropy integral that controls the
stochastic term in the proof strategy. For f = 1, n = 1000, across
dimensions d € {1,2,3,5}:

At d = 1, the entropy integral squared ranges from 0.000636 (at
r = 0.02) to 0.401 (at r = 0.5), with the ratio to the estimation rate
crossing 1.0 near r* = 0.1. For higher dimensions, the critical radius
increases (r* = 0.178 ford = 2, r* = 0.251 for d = 3, r* = 0.373 for
d = 5), and the entropy integral grows more slowly relative to the
estimation rate.

Conference’17, July 2017, Washington, DC, USA

Entropy Integral Squared (8 =1, n=1000) Ratio to Estimation Rate
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Figure 3: Entropy integral analysis (f = 1, n = 1000). Left:
Dudley integral squared vs. radius for d € {1,2,3,5}. Right:
ratio to the estimation rate n=28/(26+d) Vertical dotted lines
mark r* for each dimension.

5 PROOF STRATEGY ANALYSIS

Our computational results support three complementary proof
strategies:

5.1 Direction 1: Empirical Process Approach
For kernel and local polynomial estimators, the error decomposes as
FG) = £ (') = bias(x) + Z(x'), where Z(x') = f(x) ~B[f(x')]
is the stochastic term.

Bias control. The bias satisfies supsep,,(xr) bias(x")[> < A% +
2B by Holder continuity [9, 18].

Stochastic control via Dudley’s integral. The process {Z(x’) : x’ €
Bp(x,7)} has sub-Gaussian increments with [|Z(x") = Z(x"") |y, <
lx” = x”"||/ (hVnhd) [10]. Our Experiment 5 verifies that the result-
ing Dudley integral [7] yields a stochastic term bounded by the
estimation rate when h = n~1/(2f+d)

5.2 Direction 2: Wavelet Localization

Wavelet estimators benefit from spatial localization: at resolution
j, only O(r - 2/ + 1) wavelets have support intersecting By (x,71).
Each wavelet coefficient error is sub-Gaussian with parameter
o(2J d/2 /+/n) [6, 12]. The total stochastic contribution sums over
scales, and our simulations confirm this scales correctly.

5.3 Direction 3: Unified Modulus of Continuity
A modular approach defines w, (§) = SUP || —x/[| <5 le(x)—e(x")| for
the estimation error e = f — f* I Blwe(r)?] < r2B 4 2B/ (2B+d)
then (1) follows [11, 13].

6 ADDITIONAL VISUALIZATIONS

Figure 4 provides a comprehensive view of the ratio landscape
across all (n, r) configurations. The NW kernel and local polynomial
estimators (top row) show uniformly low ratios, while wavelet and
spline estimators (bottom row) exhibit moderately higher but still
sub-unity ratios.
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Empirical Risk / Theoretical Bound Ratio

NW Kernel Local Poly
2004 005 0.05 0.5 200{ 005 0.05 0.5
0.4 0.4
< <
@ s 007 0.05 @ s 007 0.05
kS 03 & 0.3
@ @
@ )
E‘ 0.2 é‘ 0.2
ERL 0.04 &g 00 0.04
0.1 0.1
2000 008 0.01 00 2000 008 0.04 00
0.02 0.05 0.10 020 0.02 0.05 010 020
Radius r Radius r
Wavelet Spline
017 0.5 200 0.14 05
0.4 0.4
< <
@ o1 @ 500 0.10
N 03 N 03
@ @
2 2
) 2 ,
0.2 0.2
§ 013 E 1000 007
0.1 0.1
0.09 00 2000 027 0.06 00
020 0.02 0.05 0.10 020
Radius r

Figure 4: Heatmaps of empirical risk / theoretical bound ratio
across all (n,r) configurations for each estimator. Warmer
colors indicate larger ratios. All values remain well below
1.0.

Sensitivity to Smoothness B (NW Kernel, n =1000)
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Figure 5: Sensitivity of the empirical-to-bound ratio to
smoothness parameter  for the NW kernel estimator (n =
1000, d = 1). The bound holds well for § < 1.0 but is violated
for higher f, indicating the need for higher-order estimators.

7 DISCUSSION AND CONCLUSIONS

Our computational study provides strong evidence for the conjec-
ture that standard nonparametric estimators satisfy the localized
sup-norm risk bound (1):

(1) Universal validity: All four estimator classes satisfy the
bound across all tested configurations with f = 1, with
maximum ratio 0.385 (wavelet at n = 2000, r = 0.05).

(2) Phase transition: The two-regime structure at r* = n~1/(2B+d)
is clearly observed, with the estimation term dominating
for r < r* and the variation term for r > r*.

Anon.

(3) Rate correctness: Empirical risks scale as n~2P/(2f+d)
matching the minimax optimal rate.

(4) Smoothness limitations: For f > 1, the NW kernel es-
timator with Gaussian kernel does not achieve the bound,
suggesting that higher-order methods or careful kernel se-
lection is necessary.

(5) Proof feasibility: The entropy integral analysis confirms
that the Dudley integral approach provides sufficient con-
trol of the stochastic term across all tested dimensions.

These findings suggest that formal proofs are within reach using

existing tools from empirical process theory [2, 10, 17, 19] and
approximation theory [5].
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