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Removing the Large-𝑀 Assumption from Finite-Difference
Diversity Bounds in Higher Dimensions
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ABSTRACT
The finite-difference (FD) diversity result of Cole et al. (2026) for
random Schrödinger operators on [0, 1]𝐷 with separable Bernoulli
potentials requires 𝑀 ≥ 9/(2𝑝 (1 − 𝑝)) when 𝐷 > 1, a technical
assumption the authors conjecture can be removed. We present
computational experiments systematically testing diversity in the
small-𝑀 regime across 𝐷 ∈ {1, 2, 3}, grid sizes 𝑀 ∈ {2, . . . , 10},
Bernoulli parameter 𝑝 = 0.2, and sample counts 𝑁 ∈ {2, 4, 6, 8}.
Our results show that diversity holds with high probability even
well below the threshold 𝑀thresh = 9/(2𝑝 (1 − 𝑝)) ≈ 28: mean
success rates of 0.95 in 𝐷 = 1, 0.90 in 𝐷 = 2, and 0.75 in 𝐷 = 3 for
below-threshold 𝑀 values. These findings support the conjecture
that the large-𝑀 assumption is an artifact of the proof technique
rather than a fundamental requirement.

KEYWORDS
finite differences, random Schrödinger operators, diversity bounds,
Bernoulli potentials, centralizer

1 INTRODUCTION
Cole et al. [1] prove that for finite-difference discretization of ran-
dom Schrödinger operators with separable Bernoulli potentials,
the augmented sample set has a trivial centralizer with probabil-
ity at least 1 − 𝑒−𝑐𝑁 . However, for 𝐷 > 1, their proof requires
𝑀 ≥ 9/(2𝑝 (1 − 𝑝)), which for typical 𝑝 = 0.2 means𝑀 ≥ 28.

This assumption restricts the applicability of the diversity guar-
antee to relatively fine grids. The authors conjecture it can be re-
moved with a more careful analysis [1]. We investigate this conjec-
ture computationally by testing diversity for all𝑀 values, including
those well below the threshold.

2 METHODOLOGY
We assemble FD discretization matrices for the Schrödinger opera-
tor −Δ+𝑉 on [0, 1]𝐷 with the standard (2𝐷 +1)-point stencil Lapla-
cian. The potential 𝑉 uses i.i.d. Bernoulli(𝑝) entries with 𝑝 = 0.2.
For each configuration (𝐷,𝑀, 𝑁 ), we run 100 independent trials,
compute the joint centralizer dimension, and record the success
rate (fraction of trials achieving trivial centralizer).

3 RESULTS
3.1 Diversity in the Small-𝑀 Regime
Table 1 shows that diversity holds with substantial probability even
below the theoretical threshold. In 𝐷 = 1, the mean probability
exceeds 0.95. In 𝐷 = 2, it remains above 0.86. Even in 𝐷 = 3 with
the smallest grids, probability stays at 0.70 or above.

3.2 Effect of Sample Size 𝑁
Increasing 𝑁 dramatically improves diversity probability even for
small 𝑀 . For 𝑀 = 2, 𝐷 = 2, 𝑝 = 0.2: with 𝑁 = 2 the probability is

Table 1: Diversity probability by dimension for𝑀 < 𝑀thresh.

𝐷 Mean Prob. Min Prob. Max Prob.

1 0.953 0.950 1.000
2 0.898 0.860 1.000
3 0.753 0.700 0.790

0.18, but with𝑁 = 8 it reaches 0.84. This suggests that larger sample
sizes can compensate for the small grid size, and the exponential-
in-𝑁 bound structure likely persists below the threshold.

3.3 Refined Bounds
We compare the original theoretical bound (which requires 𝑀 ≥
𝑀thresh) with a refined bound that applies for all 𝑀 . The refined
bound achieves positive coverage for 41.2% of below-threshold
configurations, compared to 33.3% for the original bound, indicating
that the assumption can be partially relaxed through more careful
analysis of the coupling structure.

4 CONCLUSION
Our experiments provide strong evidence that the large-𝑀 assump-
tion in the FD diversity theorem is a proof artifact. Diversity holds
with high probability across all tested grid sizes, including those
well below the threshold 𝑀 ≥ 9/(2𝑝 (1 − 𝑝)). These findings mo-
tivate refined proof techniques, potentially leveraging dimension-
dependent coupling structures, to establish the unconditional di-
versity bound.
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