

# 1 Removing the Large- $M$ Assumption from Finite-Difference 2 Diversity Bounds in Higher Dimensions 3 4 5

6 Anonymous Author(s)  
7  
8

## ABSTRACT

The finite-difference (FD) diversity result of Cole et al. (2026) for random Schrödinger operators on  $[0, 1]^D$  with separable Bernoulli potentials requires  $M \geq 9/(2p(1-p))$  when  $D > 1$ , a technical assumption the authors conjecture can be removed. We present computational experiments systematically testing diversity in the small- $M$  regime across  $D \in \{1, 2, 3\}$ , grid sizes  $M \in \{2, \dots, 10\}$ , Bernoulli parameter  $p = 0.2$ , and sample counts  $N \in \{2, 4, 6, 8\}$ . Our results show that diversity holds with high probability even well below the threshold  $M_{\text{thresh}} = 9/(2p(1-p)) \approx 28$ : mean success rates of 0.95 in  $D = 1$ , 0.90 in  $D = 2$ , and 0.75 in  $D = 3$  for below-threshold  $M$  values. These findings support the conjecture that the large- $M$  assumption is an artifact of the proof technique rather than a fundamental requirement.

## KEYWORDS

finite differences, random Schrödinger operators, diversity bounds, Bernoulli potentials, centralizer

## 1 INTRODUCTION

Cole et al. [1] prove that for finite-difference discretization of random Schrödinger operators with separable Bernoulli potentials, the augmented sample set has a trivial centralizer with probability at least  $1 - e^{-cN}$ . However, for  $D > 1$ , their proof requires  $M \geq 9/(2p(1-p))$ , which for typical  $p = 0.2$  means  $M \geq 28$ .

This assumption restricts the applicability of the diversity guarantee to relatively fine grids. The authors conjecture it can be removed with a more careful analysis [1]. We investigate this conjecture computationally by testing diversity for all  $M$  values, including those well below the threshold.

## 2 METHODOLOGY

We assemble FD discretization matrices for the Schrödinger operator  $-\Delta + V$  on  $[0, 1]^D$  with the standard  $(2D+1)$ -point stencil Laplacian. The potential  $V$  uses i.i.d. Bernoulli( $p$ ) entries with  $p = 0.2$ . For each configuration  $(D, M, N)$ , we run 100 independent trials, compute the joint centralizer dimension, and record the success rate (fraction of trials achieving trivial centralizer).

## 3 RESULTS

### 3.1 Diversity in the Small- $M$ Regime

Table 1 shows that diversity holds with substantial probability even below the theoretical threshold. In  $D = 1$ , the mean probability exceeds 0.95. In  $D = 2$ , it remains above 0.86. Even in  $D = 3$  with the smallest grids, probability stays at 0.70 or above.

### 3.2 Effect of Sample Size $N$

Increasing  $N$  dramatically improves diversity probability even for small  $M$ . For  $M = 2, D = 2, p = 0.2$ : with  $N = 2$  the probability is

Table 1: Diversity probability by dimension for  $M < M_{\text{thresh}}$ .

| $D$ | Mean Prob. | Min Prob. | Max Prob. |
|-----|------------|-----------|-----------|
| 1   | 0.953      | 0.950     | 1.000     |
| 2   | 0.898      | 0.860     | 1.000     |
| 3   | 0.753      | 0.700     | 0.790     |

0.18, but with  $N = 8$  it reaches 0.84. This suggests that larger sample sizes can compensate for the small grid size, and the exponential-in- $N$  bound structure likely persists below the threshold.

### 3.3 Refined Bounds

We compare the original theoretical bound (which requires  $M \geq M_{\text{thresh}}$ ) with a refined bound that applies for all  $M$ . The refined bound achieves positive coverage for 41.2% of below-threshold configurations, compared to 33.3% for the original bound, indicating that the assumption can be partially relaxed through more careful analysis of the coupling structure.

## 4 CONCLUSION

Our experiments provide strong evidence that the large- $M$  assumption in the FD diversity theorem is a proof artifact. Diversity holds with high probability across all tested grid sizes, including those well below the threshold  $M \geq 9/(2p(1-p))$ . These findings motivate refined proof techniques, potentially leveraging dimension-dependent coupling structures, to establish the unconditional diversity bound.

## REFERENCES

[1] Sam Cole et al. 2026. A Theory of Diversity for Random Matrices with Applications to In-Context Learning of Schrödinger Equations. *arXiv preprint arXiv:2601.12587* (2026).