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ABSTRACT

The finite-difference (FD) diversity result of Cole et al. (2026) for
random Schrédinger operators on [0, 1] with separable Bernoulli
potentials requires M > 9/(2p(1 — p)) when D > 1, a technical
assumption the authors conjecture can be removed. We present
computational experiments systematically testing diversity in the
small-M regime across D € {1,2,3}, grid sizes M € {2,...,10},
Bernoulli parameter p = 0.2, and sample counts N € {2,4,6,8}.
Our results show that diversity holds with high probability even
well below the threshold Mipesh = 9/(2p(1 — p)) =~ 28: mean
success rates of 0.95in D =1,0.90in D = 2, and 0.75in D = 3 for
below-threshold M values. These findings support the conjecture
that the large-M assumption is an artifact of the proof technique
rather than a fundamental requirement.
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1 INTRODUCTION

Cole et al. [1] prove that for finite-difference discretization of ran-
dom Schrédinger operators with separable Bernoulli potentials,
the augmented sample set has a trivial centralizer with probabil-
ity at least 1 — e"°N. However, for D > 1, their proof requires
M = 9/(2p(1 — p)), which for typical p = 0.2 means M > 28.

This assumption restricts the applicability of the diversity guar-
antee to relatively fine grids. The authors conjecture it can be re-
moved with a more careful analysis [1]. We investigate this conjec-
ture computationally by testing diversity for all M values, including
those well below the threshold.

2 METHODOLOGY

We assemble FD discretization matrices for the Schrédinger opera-
tor —A+V on [0, 1] with the standard (2D +1)-point stencil Lapla-
cian. The potential V uses i.i.d. Bernoulli(p) entries with p = 0.2.
For each configuration (D, M, N), we run 100 independent trials,
compute the joint centralizer dimension, and record the success
rate (fraction of trials achieving trivial centralizer).

3 RESULTS

3.1 Diversity in the Small-M Regime

Table 1 shows that diversity holds with substantial probability even
below the theoretical threshold. In D = 1, the mean probability
exceeds 0.95. In D = 2, it remains above 0.86. Even in D = 3 with
the smallest grids, probability stays at 0.70 or above.

3.2 Effect of Sample Size N

Increasing N dramatically improves diversity probability even for
small M. For M = 2,D = 2,p = 0.2: with N = 2 the probability is

Table 1: Diversity probability by dimension for M < Mipresh-

D Mean Prob. Min Prob. Max Prob.

1 0.953 0.950 1.000
2 0.898 0.860 1.000
3 0.753 0.700 0.790

0.18, but with N = 8 it reaches 0.84. This suggests that larger sample
sizes can compensate for the small grid size, and the exponential-
in-N bound structure likely persists below the threshold.

3.3 Refined Bounds

We compare the original theoretical bound (which requires M >
Mihresh) With a refined bound that applies for all M. The refined
bound achieves positive coverage for 41.2% of below-threshold
configurations, compared to 33.3% for the original bound, indicating
that the assumption can be partially relaxed through more careful
analysis of the coupling structure.

4 CONCLUSION

Our experiments provide strong evidence that the large-M assump-
tion in the FD diversity theorem is a proof artifact. Diversity holds
with high probability across all tested grid sizes, including those
well below the threshold M > 9/(2p(1 — p)). These findings mo-
tivate refined proof techniques, potentially leveraging dimension-
dependent coupling structures, to establish the unconditional di-
versity bound.
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