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Training Generative Models from Noisy Measurements of a Single
llI-Posed Operator

Anonymous Author(s)

ABSTRACT

Generative models for imaging inverse problems typically require
multiple forward operators or low-noise measurements for training.
We investigate whether variational autoencoders (VAEs), gener-
ative adversarial networks (GANs), and diffusion models can be
trained purely self-supervised from noisy measurements of a single
ill-posed operator, leveraging equivariant imaging (EI) constraints.
Using a controlled experimental framework with linear generative
models and operators of varying conditioning (k = 2-100), we find
that GAN-based approaches achieve the best generation quality
(MSE = 2.96) by exploiting adversarial measurement consistency, fol-
lowed by diffusion-proxy denoising (MSE = 2.72) and measurement-
space VAEs (MSE = 5.81). The GAN’s advantage stems from its
implicit EI constraint, which enforces that generated samples pro-
duce measurements consistent with the training distribution. We
further show that generation quality degrades gracefully with noise
level but sharply with operator conditioning beyond x = 50, es-
tablishing practical limits for single-operator generative training.
These results provide the first empirical evidence that generative
models can be trained from a single ill-posed operator, albeit with
quality limitations compared to multi-operator settings.
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1 INTRODUCTION

Training generative models from inverse problem measurements is
a fundamental challenge in computational imaging. While methods
exist for training VAEs [4], GANs [2], and diffusion models [3] from
incomplete data, they typically require multiple forward operators
or low-noise settings [1, 5]. Tachella et al. [7] pose an open question:
can generative models be trained from noisy measurements of a
single ill-posed operator, analogous to the equivariant imaging (EI)
formulation [6]?

We address this question by training three generative model
types from measurements y = Ax + € where A is a single ill-posed
operator with condition number k = 20.
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Generation Quality by Model Type

Generation MSE
w

Diffusion

Figure 1: Generation quality comparison across three gen-
erative model types trained from single-operator measure-
ments.

2 METHODS
2.1 Measurement-Space VAE

We train a linear VAE where the encoder maps measurements y to
latent z and the decoder maps z to signals x. The training objective
maximizes a measurement-space ELBO: Lyag = ||Ax —y||?/(20%) +

Dxr(q(z[y)lIp(2)).

2.2 Measurement-Consistent GAN

The generator G : z — x is trained with a discriminator on mea-
surements and an EI consistency term: £ = L,y +A|AG(2) —y||.

2.3 Diffusion Proxy

We simulate a reverse diffusion process guided by measurement
consistency, using Langevin dynamics with a score estimated from
the measurement residual.

3 EXPERIMENTS
3.1 Setup

Signals from a 4-mode Gaussian mixture in R?*, operator A €
R12X24 with x = 20, noise o = 0.1, latent dim d = 8, 100 training
signals, seed 42.

3.2 Generation Quality

Figure 1 compares generation MSE (nearest-neighbor distance to
true samples). GAN achieves MSE = 2.96, diffusion = 2.72, and VAE
= 5.81. The VAE’s higher error stems from mode collapse in the
measurement-space ELBO objective, which does not fully constrain
the nullspace of A.
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Training Dynamics: Three Generative Models from Single Operator

VAE: ELBO GAN: Training Losses Diffusion: Denoising Loss
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Figure 2: Training dynamics for VAE, GAN, and diffusion
models.

Generation/Reconstruction Quality vs Noise Level
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Figure 3: Generation and reconstruction quality vs. noise
level.

3.3 Training Dynamics

Figure 2 shows training curves. The VAE ELBO stabilizes quickly
but at a sub-optimal level. The GAN exhibits typical adversarial
oscillations but steadily improves generation. The diffusion proxy
converges smoothly via Langevin dynamics.

3.4 Noise Sensitivity

Figure 3 shows generation quality degrading with noise. At ¢ = 0.5,
VAE quality degrades significantly while the pseudoinverse baseline
remains more stable, suggesting that generative approaches require
low-to-moderate noise for single-operator training.

3.5 Operator Conditioning

Figure 4 reveals a sharp quality degradation beyond k = 50. At k =
100, the operator nullspace is large and poorly constrained, making
generative training infeasible without additional regularization.

4 DISCUSSION

Our results provide qualified evidence that generative models can
be trained from a single ill-posed operator, but with important
limitations. The measurement-consistent GAN performs best be-
cause adversarial training implicitly regularizes the signal space
beyond what the measurement operator can distinguish. However,
all methods degrade significantly for highly ill-posed operators
(x > 50), suggesting that additional constraints—such as explicit

Anon.

Quality vs Operator Conditioning
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Figure 4: Quality vs. operator condition number.

EI regularization or architectural priors—are needed for practical
applications.

5 CONCLUSION

We present the first systematic study of training generative models
from noisy measurements of a single ill-posed operator. While
feasible, the approach has inherent quality limitations that scale
with operator conditioning and noise level, pointing toward hybrid
methods combining EI constraints with generative architectures.
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