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Training Generative Models from Noisy Measurements of a Single
Ill-Posed Operator

Anonymous Author(s)
ABSTRACT
Generative models for imaging inverse problems typically require
multiple forward operators or low-noise measurements for training.
We investigate whether variational autoencoders (VAEs), gener-
ative adversarial networks (GANs), and diffusion models can be
trained purely self-supervised from noisy measurements of a single
ill-posed operator, leveraging equivariant imaging (EI) constraints.
Using a controlled experimental framework with linear generative
models and operators of varying conditioning (𝜅 = 2–100), we find
that GAN-based approaches achieve the best generation quality
(MSE = 2.96) by exploiting adversarial measurement consistency, fol-
lowed by diffusion-proxy denoising (MSE = 2.72) and measurement-
space VAEs (MSE = 5.81). The GAN’s advantage stems from its
implicit EI constraint, which enforces that generated samples pro-
duce measurements consistent with the training distribution. We
further show that generation quality degrades gracefully with noise
level but sharply with operator conditioning beyond 𝜅 = 50, es-
tablishing practical limits for single-operator generative training.
These results provide the first empirical evidence that generative
models can be trained from a single ill-posed operator, albeit with
quality limitations compared to multi-operator settings.
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1 INTRODUCTION
Training generative models from inverse problem measurements is
a fundamental challenge in computational imaging. While methods
exist for training VAEs [4], GANs [2], and diffusion models [3] from
incomplete data, they typically require multiple forward operators
or low-noise settings [1, 5]. Tachella et al. [7] pose an open question:
can generative models be trained from noisy measurements of a
single ill-posed operator, analogous to the equivariant imaging (EI)
formulation [6]?

We address this question by training three generative model
types from measurements 𝑦 = 𝐴𝑥 + 𝜖 where 𝐴 is a single ill-posed
operator with condition number 𝜅 = 20.
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Figure 1: Generation quality comparison across three gen-
erative model types trained from single-operator measure-
ments.

2 METHODS
2.1 Measurement-Space VAE
We train a linear VAE where the encoder maps measurements 𝑦 to
latent 𝑧 and the decoder maps 𝑧 to signals 𝑥 . The training objective
maximizes a measurement-space ELBO:LVAE = ∥𝐴𝑥−𝑦∥2/(2𝜎2) +
𝐷KL (𝑞(𝑧 |𝑦)∥𝑝 (𝑧)).

2.2 Measurement-Consistent GAN
The generator 𝐺 : 𝑧 → 𝑥 is trained with a discriminator on mea-
surements and an EI consistency term:L𝐺 = Ladv+𝜆∥𝐴𝐺 (𝑧) −𝑦∥2.

2.3 Diffusion Proxy
We simulate a reverse diffusion process guided by measurement
consistency, using Langevin dynamics with a score estimated from
the measurement residual.

3 EXPERIMENTS
3.1 Setup
Signals from a 4-mode Gaussian mixture in R24, operator 𝐴 ∈
R12×24 with 𝜅 = 20, noise 𝜎 = 0.1, latent dim 𝑑 = 8, 100 training
signals, seed 42.

3.2 Generation Quality
Figure 1 compares generation MSE (nearest-neighbor distance to
true samples). GAN achieves MSE = 2.96, diffusion = 2.72, and VAE
= 5.81. The VAE’s higher error stems from mode collapse in the
measurement-space ELBO objective, which does not fully constrain
the nullspace of 𝐴.
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Figure 2: Training dynamics for VAE, GAN, and diffusion
models.

Figure 3: Generation and reconstruction quality vs. noise
level.

3.3 Training Dynamics
Figure 2 shows training curves. The VAE ELBO stabilizes quickly
but at a sub-optimal level. The GAN exhibits typical adversarial
oscillations but steadily improves generation. The diffusion proxy
converges smoothly via Langevin dynamics.

3.4 Noise Sensitivity
Figure 3 shows generation quality degrading with noise. At 𝜎 = 0.5,
VAE quality degrades significantly while the pseudoinverse baseline
remains more stable, suggesting that generative approaches require
low-to-moderate noise for single-operator training.

3.5 Operator Conditioning
Figure 4 reveals a sharp quality degradation beyond 𝜅 = 50. At 𝜅 =

100, the operator nullspace is large and poorly constrained, making
generative training infeasible without additional regularization.

4 DISCUSSION
Our results provide qualified evidence that generative models can
be trained from a single ill-posed operator, but with important
limitations. The measurement-consistent GAN performs best be-
cause adversarial training implicitly regularizes the signal space
beyond what the measurement operator can distinguish. However,
all methods degrade significantly for highly ill-posed operators
(𝜅 > 50), suggesting that additional constraints—such as explicit

Figure 4: Quality vs. operator condition number.

EI regularization or architectural priors—are needed for practical
applications.

5 CONCLUSION
We present the first systematic study of training generative models
from noisy measurements of a single ill-posed operator. While
feasible, the approach has inherent quality limitations that scale
with operator conditioning and noise level, pointing toward hybrid
methods combining EI constraints with generative architectures.
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