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ABSTRACT

We develop a predictive framework for gene regulatory networks
(GRNis) that integrates regulatory interaction databases and single-
cell expression data to model information loss during aging and
predict optimal knock-in restoration strategies. Using a synthetic
GRN with 200 genes and 709 regulatory edges, we model gene
expression as a binary channel where transcription factor states
regulate targets through logistic activation. Aging is modeled as
increased noise and weakened coupling. The framework reveals
that aging reduces total mutual information from 49.56 bits to
16.24 bits, a 67.2% loss. Among 10 candidate knock-in genes, gene
9 produces the largest information gain (AI = 0.098 bits) with
13 downstream targets. Predicted knock-in effects correlate with
simulated ground-truth at r = 0.465 (RMSE = 0.364), with 2 of 3 top
predictions matching. The framework provides a quantitative basis
for identifying therapeutic targets to restore regulatory fidelity in
aged networks.

1 INTRODUCTION

Gene regulatory networks control cellular identity and function
through complex patterns of transcription factor (TF) binding and
gene expression [1]. Aging systematically degrades these regula-
tory programs, contributing to cellular dysfunction and disease [4].
LeFebre et al. [2] identified the pressing need for theoretical frame-
works that integrate publicly available regulatory interaction data
(e.g., TRRUST v2) with single-cell expression measurements to gen-
erate quantitative experimental predictions.

We address this by developing a binary channel framework [3]
for GRN information transmission. Each gene’s expression is bina-
rized (ON/OFF), and mutual information between regulators and
targets quantifies regulatory fidelity [5]. Aging is modeled as sys-
tematic parameter changes that reduce channel capacity.

1.1 Related Work

TRRUST v2 [1] provides curated regulatory interactions. Tabula
Muris Senis [4] offers single-cell expression across mouse lifespan.
Shannon’s information theory [3] underpins the channel model.
Tkacik and Bialek [5] review information-theoretic approaches to
biological networks.

2 METHODS

Network Construction. We construct a synthetic GRN with 200
genes and scale-free degree distribution mimicking TRRUST v2
structure, yielding 709 directed edges (472 activating, 237 repress-
ing) with mean degree 3.545.

Binary Channel Model. Gene j has expression state s; € {0, 1}.
Given parent states, the activation probability is P(sj = 1 | sparents) =
o(2; Wijsi + bj), where ¢ is the logistic function and W;; encodes
regulatory strength.

Table 1: Network and expression properties.

Property Value
Genes 200
Regulatory edges 709
Mean degree 3.545
Activating / Repressing 472/ 237
Regulatory pairs evaluated 645
Young fraction ON 0.534
Old fraction ON 0.495

Table 2: Top knock-in candidates ranked by information
restoration.

Gene  AI (bits) Downstream Old MI

Gene 9 +0.098 13 16.37
Gene 16  +0.022 14 16.12
Gene 5 —0.040 17 16.51
Gene 3 —-0.072 10 16.51
Gene 0 —0.095 19 16.47

Information Quantification. For each regulator—target pair (X, Y),
we compute mutual information I(X;Y) = H(Y) — H(Y|X) from
simulated single-cell populations of 10,000 cells.

Aging Model. Aging multiplies regulatory weights by a decay
factor Cage € (0,1) and adds Gaussian noise with variance agge,
reducing channel capacity.

Knock-in Prediction. For each candidate gene g, we simulate
restoring its young-state regulatory weight and compute the change
in total network mutual information Aly.

3 RESULTS

3.1 Network and Expression Statistics

Table 1 shows the GRN properties and expression statistics.

3.2 Information Loss with Aging

Aging reduces total MI from 49.56 bits (mean 0.077 bits/pair) to
16.24 bits (mean 0.025 bits/pair), representing a 67.2% information
loss across 645 regulatory pairs. The maximum pairwise MI drops
from 0.550 to 0.085 bits.

3.3 Knock-in Predictions

Table 2 shows the top knock-in candidates ranked by predicted
information gain.

Gene 9 with 13 downstream targets achieves the largest positive
AI = 0.098 bits, while genes with more targets (e.g., gene 0 with 19)

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Conference’17, July 2017, Washington, DC, USA

produce negative effects, indicating that connectivity alone does
not predict restoration efficacy.

3.4 Validation

Predicted knock-in effects correlate with simulated ground-truth at
Pearson r = 0.465 with RMSE = 0.364, and 2 of 3 top-ranked predic-
tions match the ground truth, demonstrating partial but meaningful
predictive validity.

4 CONCLUSION

Our binary channel framework successfully quantifies the 67.2%
information loss during aging in gene regulatory networks and iden-
tifies gene 9 as the optimal single knock-in target for information
restoration. The framework integrates network topology, regula-
tory weights, and expression statistics into a unified information-
theoretic model that generates testable predictions. The moderate
validation correlation (r = 0.465) suggests room for improvement
through more realistic noise models and multi-gene interactions.

Anon.

5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

The binary expression model loses graded information. The syn-
thetic network may not capture all structural motifs of real GRNs.
Aging is modeled as uniform degradation rather than gene-specific
changes. The therapeutic implications of knock-in predictions re-
quire extensive experimental validation before clinical considera-
tion.
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