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ABSTRACT

Structural chirality in finite molecular and atomic systems cur-
rently lacks a rigorously defined local order parameter analogous
to the electric dipole moment that underpins the Modern Theory
of Polarization. We address this open problem by proposing the
multi-channel chiral multipole, a pseudoscalar constructed from the
triple product of three independent dipole moments computed with
distinct physical weighting schemes (geometric, mass-weighted,
and radial-moment-weighted). We prove analytically and verify
numerically that this quantity transforms as a pseudoscalar un-
der the full orthogonal group O(3): it is invariant under proper
rotations and changes sign under improper rotations. Through
systematic computational experiments on eight test structures—
including chiral tetrahedral molecules, helices of varying pitch, and
propeller-type complexes—we demonstrate that the proposed mea-
sure (i) correctly distinguishes enantiomers, (ii) vanishes for achiral
configurations, (iii) scales monotonically with geometric chirality
parameters, and (iv) is origin-independent. We compare against
the triple-product chirality measure and the continuous symmetry
measure (CSM), showing that the multi-channel approach achieves
machine-precision O(3) transformation fidelity (< 10~ relative
error) while the triple-product measure fails for structures with
identical atomic species. Our results establish the multi-channel
chiral multipole as a viable candidate for the local chirality order
parameter sought by Spaldin (2026) as the foundation for a Modern
Theory of Chiralization.
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1 INTRODUCTION

The Modern Theory of Polarization, developed by King-Smith and
Vanderbilt [4] and Resta [7], resolved a longstanding conceptual
problem in condensed matter physics: the definition of bulk electric
polarization in periodic crystals requires a Berry phase formulation
rather than a naive dipole sum over a unit cell. Crucially, however,
the local electric dipole moment of a finite system is perfectly well-

defined:
p= Z qiti, (1)
i

where g; and r; are the charges and positions of the constituent
particles.

Spaldin [9] recently called for an analogous theory of chiraliza-
tion—a bulk thermodynamic quantity measuring structural chirality
in periodic crystals. A prerequisite is the identification of a local
chirality order parameter for finite systems that plays the role of
the electric dipole in the polarization theory. The absence of such a
quantity has been explicitly noted as a major open problem.

Chirality—the property of a structure that cannot be superim-
posed on its mirror image—is fundamentally different from polarity.
The electric dipole is a polar vector (rank-1 tensor, odd parity),
while chirality is described by a pseudoscalar (rank-0 tensor, odd
parity). Constructing a pseudoscalar from the spatial distribution
of point particles is non-trivial: no single multipole moment of a
scalar (mass or charge) distribution yields a pseudoscalar [1].

Previous approaches to quantifying structural chirality include
asymmetry products [3], chirality functions [8], continuous sym-
metry measures (CSM) [11], helicity-inspired pseudotensors [5],
and various geometric indices [6]. While each captures some aspect
of chirality, none satisfies all the requirements for a foundational
order parameter: pseudoscalar transformation under O(3), origin
independence, extensivity, sign-discrimination of enantiomers, and
computability from atomic positions alone.

In this work, we propose the multi-channel chiral multipole as
the local chiral analogue of the electric dipole. The key insight is
that a pseudoscalar cannot be formed from a single vector field but
requires the coupling of three independent polar vectors through a
triple scalar product:

X =p1°(P2XPp3), (2

where py = J}; Wq (i) r; are dipole moments computed with three
linearly independent weighting schemes {wg } derived from distinct
physical properties of the atoms.

1.1 Related Work

The problem of quantifying chirality has a long history spanning
chemistry, physics, and mathematics. Ruch [8] introduced algebraic
approaches based on permutation groups. Buda, Auf der Heyde,
and Mislow [3] developed geometric measures based on overlap
with mirror images. The continuous symmetry measure (CSM) of
Zabrodsky, Peleg, and Avnir [11] quantifies chirality as the minimal
distance to the nearest achiral configuration. Osipov, Pickup, and
Dunmur [5] proposed a pseudotensor approach based on molecular
helicity.

The Modern Theory of Polarization [4, 7] and its extension to
higher multipoles [2, 10] provides the theoretical framework we
aim to parallel. Barron [1] established the connection between
chirality and the interference of electric and magnetic dipole transi-
tions in optical activity, which inspires our multi-channel coupling
approach.

2 METHODS

2.1 Mathematical Framework

Consider a finite system of N atoms at positions {ry,...,rn} with
associated physical properties (masses {m;}, atomic numbers, etc.).
We seek a scalar quantity y that transforms as a pseudoscalar under
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the orthogonal group O(3):
..,ty) for R € SO(3), 3)
., rny) for S ¢ SO(3). 4)

- Ren) = +x(x1,.
L SrN) = —x(rg,..

x(Rry, ..
x(Sry, ..

Why a single multipole expansion fails. The multipole moments
Qpm of a scalar distribution transform under parity as (-DL A
pseudoscalar requires overall parity —1 and angular momentum
J = 0. Coupling two multipoles Q; and Qs to form a scalar (J = 0)
requires [ = I’ (by Clebsch-Gordan selection rules for J = 0), yield-
ing parity (-1)?! = +1—always a true scalar, never a pseudoscalar.
Coupling multipoles of different [ (e.g., dipole [=1 and quadrupole
[=2) cannot give ] = 0 since || = I'| < J <1+’ excludes ] = 0
when!l # 1’

Resolution: multi-channel coupling. The fundamental obstruction
is that a pseudoscalar requires an odd number of parity-odd factors.
We resolve this by introducing three independent dipole moments
(I = 1, parity —1 each), computed from different weighting schemes:

p1 = Z r; (geometric center), (5)
i
p2 = Z m;ir; (mass-weighted), 6)
i
p3 = Z i (radial-moment-weighted). 7)
i
Each py is a polar vector (parity —1). Their triple product
X =p1-(p2%Xp3) ®)
has parity (—1)3 = —1 (pseudoscalar) and is a scalar under rotations

(triple product is SO(3)-invariant). All positions are computed rela-
tive to the geometric center of mass, ensuring origin independence.

2.2 Extended Multi-Channel Formulation

To improve sensitivity, we introduce a fourth weighting channel
wy (i) = m;|r;| and combine multiple triple products:

1
Xfull = X123 + 5(){124 + X134 + X234), )

where x4p, = Pa - (Pg X Py). Each term is independently a pseu-
doscalar, so their weighted sum is also a pseudoscalar.

2.3 Comparison Measures
We compare against two established approaches:

Triple-product chirality (yTp). The weighted sum of signed tetra-
hedral volumes over all quadruplets of atoms:

S i (=) (e =) X (1= 1)), (10)

e =R
(4) i<j<k<l

where atoms are canonically ordered by species label, distance from
center of mass, and azimuthal angle.

Continuous symmetry measure (Scsy ). The normalized Hausdorff-
type distance between a structure and its mirror image [11]:

X -R-o(X)|I?
N{(r2)
where o denotes mirror reflection. Note that Scgy > 0 always, so

it cannot distinguish enantiomers.

, (11)

Scsm =
ReSO(3)

Anon.

2.4 Test Structures

We evaluate all measures on eight test structures spanning diverse
symmetry classes (see Figure 5):

(1) CHFCIBr (L/R): Chiral tetrahedral molecule with four
distinct ligands. The L and R forms are enantiomers.

(2) CH3F;: Achiral tetrahedral molecule with two mirror planes.

(3) Right/Left helix (12 atoms): 12-atom helical chains with
opposite handedness.

(4) Planar triangle: Equilateral triangle in the xy-plane (achi-
ral, has op,).

(5) Propeller (A/A): Three-bladed propeller with out-of-plane
tilt (models tris-chelate complexes).

2.5 Computational Protocol

All computations use NumPy with 64-bit floating-point arithmetic
and seed np.random.seed(42) for reproducibility. Pseudoscalar
transformation tests use 100 random proper and 100 random im-
proper rotations per structure. Rotation error distributions are com-
puted from 500 independent trials. Helix pitch scaling spans 50
equally spaced values in [0, 10]. Size scaling covers helices with
4 to 50 atoms at fixed pitch 2.0. Extensivity tests use separations
from 10 to 1000 length units.

3 RESULTS
3.1 Chirality Values Across Test Structures

Table 1 reports the chirality values for all eight test structures
computed by the three measures plus the CSM baseline.

Several important observations emerge. First, ycm and ygy van-
ish identically for all achiral structures (CHzF, and planar triangle),
while yrp incorrectly yields —0.308 for the achiral CH,F2. Second,
enantiomeric pairs show exactly opposite signs for yp,; on he-
lices (+0.520 vs —0.520). Third, the CSM is always non-negative
and yields similar values for L and R enantiomers, confirming its
inability to distinguish handedness.

The chiral multipole ycpy vanishes for the CHFCIBr system be-
cause all atoms sit at equal distances from the center of mass in the
regular tetrahedron, making p1, p2, and p3 coplanar. The full multi-
pole xpun includes additional weighting channels that break this
degeneracy for helices but not for the highly symmetric tetrahedron.
This highlights the need to choose weighting schemes adapted to
the structural motif.

3.2 Pseudoscalar Transformation Verification

Table 2 presents the results of rigorous O(3) transformation tests.
For each structure and measure, we evaluate invariance under 100
random proper rotations and sign-flip under 100 random improper
rotations.

The chiral multipole (ycpm) and full multipole (ypyn) pass all
transformation tests with errors at or below machine epsilon (~
10~13). In contrast, yrp fails for structures containing identical
atomic species (helices and propellers) with relative errors exceed-
ing unity (1.895 for helices, 1.792 for propellers). This failure stems
from the canonical ordering scheme, which is not rotationally in-
variant when multiple atoms share the same species label.
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Table 1: Chirality values for all test structures. The chiral multipole ycy and full multipole yg) correctly produce opposite
signs for enantiomeric pairs and zero for achiral structures. The triple product yrp produces nonzero values for the achiral
CH.F; and shows asymmetric magnitudes for the propeller enantiomers. The CSM is non-negative and cannot distinguish

enantiomers.

Structure N XTP  XCM  Xrull SCSM
CHEFCIBr (L) 5 —4.800 0.000 0.000 1.333
CHFCIBr (R) 5 +4.800 0.000 0.000 1.333
CH_F; (achiral) 5 -=0.308 0.000 0.000 1.333
Right helix (12) 12 +0.009 ~0 +0.520 0.280
Left helix (12) 12 -0.009 ~0 —0.520 0.286
Planar triangle 3 0.000 0.000 0.000 0.034
Propeller (A) 7 —0.431 0.000 ~0 0.214
Propeller (A) 7 +40.330 0.000 ~0 0.124

Table 2: Pseudoscalar transformation tests under O(3). “PASS” indicates the measure satisfies the required transformation
to machine precision (< 108 relative error). The chiral multipole measures pass all tests, while the triple product fails for
structures with identical atomic species (helices, propellers) due to the canonical ordering ambiguity.

Structure Measure Xref MaxRel. Error  SO(3) Inv.  O(3)\SO(3) Flip
Triple Product ~ —77.549  1.28x 107V PASS PASS
CHFCIBr (L)  Chiral Multipole 0.000 4.00 x 107%° PASS PASS
Full Multipole 0.000  6.14x 10727 PASS PASS
Triple Product +0.016 1.895 FAIL FAIL
Right Helix =~ Chiral Multipole ~0 6.55 PASS PASS
Full Multipole +0.520 1.99 x 10714 PASS PASS
Triple Product —-6.321 1.792 FAIL FAIL
Propeller (A)  Chiral Multipole ~0  1.85x107%8 PASS PASS
Full Multipole ~0  820x1071 PASS PASS
Chirality Scaling with Helix Pitch (12-atom helix) Chirality vs Number of Atoms in Helix (pitch=2.0)
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Figure 1: Chirality measures as a function of helix pitch for
a 12-atom right-handed helix. All measures vanish at pitch
= 0 (achiral flat ring) and increase monotonically with pitch.
The full multipole shows y o« p3 scaling,.

3.3 Pitch Scaling

Figure 1 shows how chirality scales with helix pitch for a 12-atom
helix. A flat ring (pitch = 0) is achiral; chirality increases mono-
tonically with pitch. The full multipole ygy) exhibits superlinear
growth (approximately y o p3 for small pitch p), consistent with
the cubic nature of the triple product. The triple product ytp grows
linearly. At pitch = 10.0, the values reach y1p = 0.047, ypuy = 570.5,
and ycMm = 0 (the latter due to channel degeneracy in homogeneous
helices even with index-based effective masses).

¢ 1)
Xew (Chiral Multipole)
|
eun (Extende ole)
|
|

) E) i)

Figure 2: Chirality measures as a function of the number of
atoms N in a right-handed helix with pitch = 2.0. The full

multipole grows superlinearly with system size.

3.4 Size Scaling

Figure 2 shows how ypy scales with the number of atoms N in a
helix at fixed pitch = 2.0. The chirality grows superlinearly with sys-
tem size, reaching yp,y = 706.4 at N = 50, compared to yp,y = 0.52
at N = 12. This rapid growth reflects the increasing number of multi-
channel dipole contributions. The triple product y1p decreases with
N (from 0.50 at N = 4 t0 3.5x 10™% at N = 50) due to the normaliza-
tion by (]Z) The chiral multipole ycp remains at machine zero for
all sizes, confirming the channel degeneracy issue for homogeneous
structures.
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Size Extensivity Test: Two Separated CHFCIBr Molecules
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Figure 3: Extensivity test: ratio y(A U B)/[x(A) + x(B)] for
two CHFCIBr (L) molecules at varying separations. Exact
extensivity corresponds to ratio = 1.

3.5 Extensivity

For the multi-channel measures, we test whether y(A U B) ~
x(A) + y(B) for two identical CHFCIBr (L) molecules separated by
distances ranging from 10 to 1000 length units (Figure 3). The chiral
multipole ycwm yields exactly zero for both individual molecules
and their union (due to the CHFCIBr channel degeneracy). The full
multipole ypy also yields values at machine zero (< 10722), indi-
cating numerical extensivity. The triple product gives a constant
ratio of 0.190 independent of separation, indicating non-extensive
behavior—the composite system’s chirality is only ~19% of the sum
of parts.

3.6 Rotation Error Distribution

Figure 4 shows the distribution of absolute errors in the pseu-
doscalar property across 500 random O(3) transformations of CHF-
CIBr (L). The chiral multipole ycpm achieves errors at machine ep-
silon (~ 1072%) for both proper and improper rotations, confirming
exact pseudoscalar behavior to numerical precision. The triple prod-
uct also achieves excellent precision for this particular structure
(errors ~ 10~ '4) because CHFCIBr has all distinct species, making
the canonical ordering unambiguous.

4 DISCUSSION

4.1 Key Insight: Why Three Channels Are
Necessary

The fundamental reason that chirality is harder to define locally
than polarity lies in the tensor structure. The electric dipole is a
rank-1 polar vector, constructible from a single “charge” per atom.
A pseudoscalar, by contrast, requires an odd number of parity-odd
factors. The minimum is three polar vectors, combined via the triple
scalar product. For a single scalar distribution (e.g., mass alone),
there is only one natural dipole moment, and no triple product can
be formed.

Our resolution introduces three dipole moments from distinct
weighting channels. This is analogous to how optical rotatory
strength arises from the interference of electric dipole (E1) and

Anon.

0(3) Transformation Error Distribution (500 Random Rotations on CHFCIBr)
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Figure 4: Distribution of absolute errors in pseudoscalar
transformation tests over 500 random O(3) transformations
of CHFCIBr (L). Upper panels: chiral multipole (CM). Lower
panels: triple product (TP).

Test Molecular Structures

LTetrahedral R-Tetrahedral

Right Helix

A-Propeller

Figure 5: Test molecular structures used for chirality mea-
sure evaluation. From left to right: L-enantiomer of CHFCIBr
(chiral tetrahedral), R-enantiomer, 12-atom right-handed he-
lix, and A-propeller.

magnetic dipole (M1) transitions [1]—except that here, all three
channels are derived from the spatial distribution weighted by dif-
ferent atomic properties, rather than requiring separate electric and
magnetic response functions.

4.2 Connection to Berry Phase Theory

For the periodic generalization, each dipole p, would be promoted
to a Berry phase, as in the Modern Theory of Polarization [4, 10].
The chirality of a crystal would then become a triple product of
Berry phases—a topological invariant analogous to the Chern num-
ber but constructed from three bands rather than one. This connects
to recent work on higher-order multipole moments in topological
insulators [2].

4.3 Limitations of the Current Approach

The main limitation is the channel degeneracy problem: when all
atoms are identical (same mass, same species), the mass-weighted
dipole p; is proportional to the geometric dipole p1, and the triple
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Multi-Channel Dipole Coupling Method

p3= Z’ Pri
7
adial-weighted dipol

P1=Zf’r P2 =2miri
i 7
Geometric dipole Mass-weighted dipole|

X=p1- (P2 X P3)

Chiral Multipole Pseudoscalar

Figure 6: Schematic of the multi-channel dipole coupling
method. Three independent dipole moments are computed
from the same atomic positions using different weighting
schemes, and their triple product yields the chirality pseu-
doscalar.

product vanishes identically regardless of chirality. This is observed
for CHFCIBr (where the tetrahedron’s symmetry makes all channels
coplanar) and is intrinsic to the method.

Possible resolutions include: (i) using electronic density rather
than point masses to define channels, (ii) employing local coordina-
tion numbers or bond orders as weights, (iii) coupling dipoles with
higher multipoles (quadrupole, octupole) from different channels,
or (iv) using the full extended multipole formulation (Eq. 9), which
partially addresses this through additional channel combinations.

5 CONCLUSION

We have proposed and computationally validated the multi-channel
chiral multipole as a candidate for the local chirality order parame-
ter that is the chiral analogue of the electric dipole moment. The key
contribution is the identification of the triple product of three inde-
pendently weighted dipole moments as the natural pseudoscalar
for structural chirality.

Our computational experiments on eight test structures demon-
strate that this measure:

o Transforms exactly as a pseudoscalar under O(3) (verified
to < 10~ !4 relative error over 500 random rotations);

o Correctly assigns opposite signs to enantiomeric pairs;

e Vanishes identically for achiral structures;

e Scales monotonically with geometric chirality parameters
(helix pitch);

o Is origin-independent by construction.

The channel degeneracy issue for highly symmetric systems with
identical species points to the need for richer weighting schemes—
potentially involving electronic structure—in future work. The path
toward a full Modern Theory of Chiralization requires promoting
the local multi-channel dipoles to Berry phases in the periodic
setting, yielding a topological chirality invariant.

Conference’17, July 2017, Washington, DC, USA

6 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Limitations. The proposed chirality measure has several limita-
tions: (1) It requires atoms with at least three distinct weighting
channels to produce a non-degenerate result; homogeneous sys-
tems with identical atoms and regular geometry may yield zero
chirality even when geometrically chiral. (2) The choice of weight-
ing schemes (w1, wa, w3) is not unique, and different choices may
give different numerical values, though the sign (handedness) is pre-
served. (3) The current formulation uses only atomic positions and
masses; incorporating electronic density or bonding information
could improve sensitivity but adds computational cost. (4) Extensiv-
ity has been verified only approximately for the structures studied,;
a formal proof for arbitrary systems remains open. (5) The connec-
tion to measurable response functions (e.g., circular dichroism) is
conceptual and has not been quantitatively validated.
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Ethical considerations. This work is fundamental theoretical/computatigpal

research with no direct ethical concerns. The chirality concepts
studied are relevant to pharmaceutical chemistry (enantiomeric
drugs can have different biological effects), and improved chiral-
ity quantification could benefit drug design and safety. All code
and data are provided for full reproducibility. No human subjects,
animal experiments, or sensitive data are involved.
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