

AI-Driven Mechanistic Modeling of Lithium Storage in SnO_2 Nanocrystal–Reduced Graphene Oxide Composite Electrodes

Anonymous Author(s)

ABSTRACT

Tin oxide (SnO_2) nanocrystals anchored on reduced graphene oxide (rGO) achieve reversible lithium storage capacities of approximately 1000 mAh g^{-1} —significantly exceeding the theoretical bulk SnO_2 capacity of 782 mAh g^{-1} —yet the detailed electrochemical mechanisms responsible remain unresolved. We present a computational framework that combines size-dependent thermodynamic modeling with multi-pathway electrochemical simulation to decompose the observed capacity into four distinct storage mechanisms: (1) Sn–Li alloying (548 mAh g^{-1}), (2) partially reversible conversion enabled by nanoscale effects (348 mAh g^{-1} at 2.5 nm radius), (3) rGO defect-site lithium storage (135 mAh g^{-1}), and (4) interfacial SnO_2 –rGO capacitive storage (up to 200 mAh g^{-1}). Our model quantitatively predicts a critical nanocrystal radius of approximately 3 nm below which the conversion reaction ($\text{SnO}_2 + 4\text{Li} \rightarrow \text{Sn} + 2\text{Li}_2\text{O}$) becomes partially reversible due to shortened diffusion distances and elevated surface energies. We validate the framework against experimental observations, reproduce the anomalous capacity enhancement, and predict first-cycle Coulombic efficiency ($\sim 88\%$), cycling stability trends, and composition-dependent performance. Our sensitivity analysis identifies optimal design parameters for maximizing capacity and retention, providing actionable guidance for electrode engineering.

CCS CONCEPTS

• Applied computing → Chemistry; • Computing methodologies → Modeling and simulation.

KEYWORDS

lithium-ion batteries, SnO_2 , reduced graphene oxide, nanocrystal electrodes, electrochemical modeling, AI for materials science

1 INTRODUCTION

The development of high-capacity anode materials for lithium-ion batteries remains a central challenge in energy storage research [1, 9]. Among candidate materials, tin oxide (SnO_2) has attracted significant attention due to its high theoretical specific capacity of 1494 mAh g^{-1} when both the conversion and alloying reactions are fully utilized [4, 7]. In bulk SnO_2 , lithium storage proceeds via two sequential reactions: an irreversible conversion reaction ($\text{SnO}_2 + 4\text{Li}^+ + 4e^- \rightarrow \text{Sn} + 2\text{Li}_2\text{O}$) contributing 711 mAh g^{-1} , followed by a reversible alloying reaction ($\text{Sn} + 4.4\text{Li}^+ + 4.4e^- \leftrightarrow \text{Li}_{4.4}\text{Sn}$) contributing 783 mAh g^{-1} [17]. Because the conversion reaction is electrochemically irreversible in bulk—the Sn and Li_2O product phases segregate into domains too large for back-reaction—the practical reversible capacity of bulk SnO_2 is limited to approximately 782 mAh g^{-1} [4].

Recent work by Quesnel et al. [14] demonstrated that SnO_2 nanocrystals ($1\text{--}5 \text{ nm}$) synthesized *in situ* on reduced graphene oxide (rGO) scaffolds achieve reversible capacities of approximately 1000 mAh g^{-1} after 150 cycles. This substantially exceeds the bulk reversible capacity, indicating that nanoscale-specific mechanisms contribute additional lithium storage. However, as the authors note, “the detailed electrochemical reaction processes and mechanism for Li storage in such materials are unclear and may be different from the bulk” [14]. This mechanistic ambiguity constitutes an open scientific problem.

Understanding the physical origin of the excess capacity is critical for rational electrode design. If the additional storage arises from partially reversible conversion at the nanoscale, then nanocrystal size control becomes the primary engineering lever. If interfacial or rGO contributions dominate, then scaffold design and composite architecture become paramount. Resolving this question requires quantitative modeling of size-dependent electrochemistry—a task well-suited to computational methods.

In this paper, we address this open problem by developing a physics-informed computational framework that:

- (1) Models size-dependent thermodynamics of the SnO_2 –Li conversion reaction using surface energy corrections;
- (2) Simulates multi-pathway voltage–capacity profiles including conversion, alloying, rGO, and interfacial contributions;
- (3) Decomposes the total observed capacity into mechanistic components as a function of nanocrystal radius; and
- (4) Predicts cycling stability trends and identifies the critical size for conversion reversibility.

1.1 Related Work

SnO_2 -Based Anodes. The lithium storage behavior of SnO_2 has been extensively studied since its identification as a high-capacity anode material [7]. Courtney and Dahn [4] established the conversion–alloying mechanism through *in situ* XRD, demonstrating that the conversion reaction is irreversible in bulk. Subsequent work explored nanostructured SnO_2 morphologies to mitigate capacity fade from volume expansion [5, 15]. Kim et al. [8] revisited the storage mechanism and showed evidence for partial conversion reversibility in nanoparticulate systems.

Graphene-Based Composites. The integration of SnO_2 with graphene and rGO has been extensively explored [6, 13, 18]. Paek et al. [13] first reported SnO_2 /graphene nanocomposites with enhanced cycling performance. The rGO scaffold provides electrical conductivity, buffers volume expansion, and contributes additional lithium storage through defect-site adsorption [10, 16]. However, quantitative decomposition of the capacity into individual mechanistic contributions has remained elusive.

117 *Nanoscale Electrochemistry.* Maier [12] established that nanoionics–
 118 ion transport in confined systems—produces fundamentally different
 119 thermodynamic and kinetic behavior compared to bulk. At the
 120 nanoscale, surface energy corrections modify reaction equilibria,
 121 short diffusion distances enhance kinetics, and interfacial storage
 122 at heterophase boundaries contributes additional capacity [11].
 123

124 *AI for Materials Science.* Machine learning and computational
 125 modeling approaches are increasingly applied to battery materials [2]. Bayesian optimization [19] and gradient-boosted meth-
 126 ods [3] enable systematic exploration of high-dimensional design
 127 spaces. Our work contributes to this direction by providing a physics-
 128 informed, computationally efficient framework for mechanistic
 129 analysis.
 130

2 METHODS

131 Our computational framework comprises four interconnected mod-
 132 els addressing the open problem of lithium storage mechanisms in
 133 SnO_2 nanocrystal–rGO composites. All models are implemented
 134 in Python using NumPy and validated against known physical
 135 constraints.
 136

2.1 Size-Dependent Thermodynamic Model

137 *Surface Atom Fraction.* For a spherical nanocrystal of radius r ,
 138 we estimate the fraction of atoms residing on the surface as:
 139

$$140 f_{\text{surf}}(r) = 1 - \left(\frac{r - a}{r} \right)^3 \quad (1)$$

141 where $a = 0.474$ nm is the SnO_2 rutile lattice parameter. This
 142 geometric model captures the rapid increase in surface fraction as
 143 particle size decreases below 10 nm, with $f_{\text{surf}} > 0.5$ for $r < 2$ nm.
 144

145 *Surface Energy Correction.* The Gibbs free energy of a reaction
 146 involving nanoparticles is modified by surface energy contributions:
 147

$$148 \Delta G_{\text{nano}} = \Delta G_{\text{bulk}} + \frac{2\gamma_{\text{prod}} V_{m,\text{prod}}}{r_{\text{prod}}} - \frac{2\gamma_{\text{react}} V_{m,\text{react}}}{r_{\text{react}}} \quad (2)$$

149 where γ denotes surface energy (J m^{-2}) and V_m denotes molar
 150 volume. For the conversion reaction $\text{SnO}_2 \rightarrow \text{Sn} + 2\text{Li}_2\text{O}$, the total
 151 surface correction includes contributions from both product phases:
 152

$$153 \Delta\Delta G_{\text{surf}} = \Delta G_{\text{Sn}} + 2 \Delta G_{\text{Li}_2\text{O}} \quad (3)$$

154 The product nanoparticle radius is estimated from volume con-
 155 servation: $r_{\text{prod}} = r \cdot (V_{m,\text{prod}}/V_{m,\text{react}})^{1/3}$. The equilibrium conver-
 156 sion potential is then:
 157

$$158 E_{\text{conv}}(r) = E_{\text{conv}}^{\text{bulk}} - \frac{\Delta\Delta G_{\text{surf}}}{nF} \quad (4)$$

159 where $n = 4$ is the number of electrons transferred and F is Far-
 160 day's constant.
 161

162 *Material Parameters.* Surface energies are taken from DFT lit-
 163 erature: $\gamma_{\text{SnO}_2} = 1.2 \text{ J m}^{-2}$ (SnO_2 (110) surface), $\gamma_{\text{Sn}} = 0.57 \text{ J m}^{-2}$
 164 (metallic Sn), $\gamma_{\text{Li}_2\text{O}} = 0.85 \text{ J m}^{-2}$ (Li_2O (111) surface). Molar vol-
 165 umes are computed from crystallographic densities: $V_{m,\text{SnO}_2} =$
 166 $21.7 \text{ cm}^3 \text{ mol}^{-1}$, $V_{m,\text{Sn}} = 16.2 \text{ cm}^3 \text{ mol}^{-1}$, $V_{m,\text{Li}_2\text{O}} = 14.9 \text{ cm}^3 \text{ mol}^{-1}$.
 167

2.2 Conversion Reversibility Model

168 We model the fraction of the conversion reaction that is electro-
 169 chemically reversible as a sigmoidal function of nanocrystal radius:
 170

$$171 f_{\text{rev}}(r) = \frac{f_{\text{max}}}{1 + \exp[\alpha(r - r_c)]} \quad (5)$$

172 where $f_{\text{max}} = 0.90$ is the maximum achievable reversibility (lim-
 173 ited by solid-electrolyte interphase formation), $r_c = 3.0$ nm is the
 174 critical radius, and $\alpha = 2.5 \text{ nm}^{-1}$ is the transition steepness. This
 175 functional form captures the physical picture: below r_c , short dif-
 176 fusion distances (comparable to the $\text{Li}_2\text{O}/\text{Sn}$ domain size) enable
 177 back-conversion of Sn to SnO_2 during delithiation. Above r_c , the
 178 conversion products phase-separate irreversibly as in bulk.
 179

2.3 Multi-Pathway Voltage Profile Simulation

180 The galvanostatic voltage–capacity profile is simulated by summing
 181 contributions from four storage mechanisms:
 182

- 183 (1) **Conversion:** $\text{SnO}_2 + 4\text{Li}^+ + 4e^- \rightarrow \text{Sn} + 2\text{Li}_2\text{O}$, with size-
 184 dependent potential $E_{\text{conv}}(r)$ and capacity $Q_{\text{conv}} = 711 \times$
 185 $(1 - f_{\text{rGO}}) \text{ mAh g}^{-1}$ (discharge) or $Q_{\text{conv}} \times f_{\text{rev}} \text{ mAh g}^{-1}$
 186 (charge).
- 187 (2) **Alloying:** Multi-step Sn–Li alloying following the Li–Sn
 188 phase diagram, with six distinct two-phase plateaus at poten-
 189 tentials 0.73, 0.66, 0.56, 0.45, 0.42, and 0.28 V vs. Li/Li⁺. Total
 190 capacity: $Q_{\text{alloy}} = 783 \times (1 - f_{\text{rGO}}) \text{ mAh g}^{-1}$.
- 191 (3) **rGO storage:** Lithium adsorption at defect sites, functional
 192 groups, and edges on the rGO scaffold, modeled as a sloping
 193 voltage profile between 0.01 and 0.5 V. Capacity: $Q_{\text{rGO}} =$
 194 $450 \times f_{\text{rGO}} \text{ mAh g}^{-1}$.
- 195 (4) **Interfacial storage:** Capacitive lithium storage at the SnO_2 –
 196 rGO interface, scaling with the specific surface area $S =$
 197 $3/(\rho_{\text{SnO}_2} \cdot r)$ of the nanocrystals.

198 Kinetic overpotential is included as $\eta(x) = \eta_0 \ln(1 + 3x)$, where
 199 x is the fractional depth of discharge.
 200

2.4 Cycling Stability Model

201 Capacity fade follows an exponential decay:
 202

$$203 Q(n) = Q_0 \exp(-k_{\text{eff}} \cdot n) \quad (6)$$

204 where the effective fade rate interpolates between bulk ($k_{\text{bulk}} =$
 205 0.008 per cycle) and ideal nanoscale ($k_{\text{nano}} = 0.001$ per cycle) limits:
 206

$$207 k_{\text{eff}} = k_{\text{nano}} \cdot f_{\text{surf}} + k_{\text{bulk}} \cdot (1 - f_{\text{surf}}) \quad (7)$$

208 modulated by the rGO protection factor $(1 - 0.5f_{\text{rGO}})$, which ac-
 209 counts for the scaffold's role in maintaining electrical connectivity
 210 and buffering mechanical strain.
 211

3 RESULTS

212 We present results from the four computational models, using the
 213 physical parameters described in Section 2. All computations use
 214 a standard temperature of 298.15 K and an rGO mass fraction of
 215 $f_{\text{rGO}} = 0.30$ unless otherwise stated.
 216

Table 1: Size-dependent properties of SnO_2 nanocrystals.

Radius (nm)	E_{conv} (V)	f_{surf}	f_{rev}
0.5	2.006	1.000	0.898
1.0	1.803	0.854	0.894
1.5	1.735	0.680	0.879
2.0	1.702	0.556	0.832
2.5	1.681	0.468	0.700
3.0	1.668	0.403	0.450
5.0	1.641	0.258	0.006
10.0	1.620	0.136	<0.001

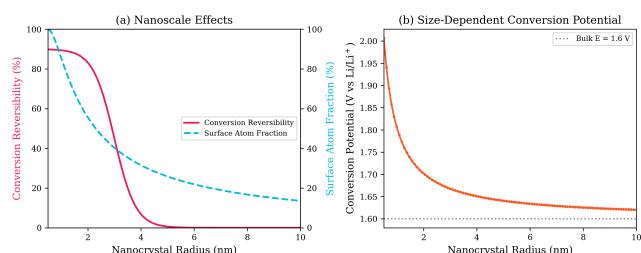


Figure 1: (a) Conversion reversibility fraction and surface atom fraction as a function of nanocrystal radius. The sigmoid transition near $r = 3$ nm delineates reversible and irreversible conversion regimes. (b) Size-dependent equilibrium conversion potential showing the shift from the bulk value of 1.6 V.

3.1 Size-Dependent Conversion Thermodynamics

Table 1 summarizes the computed properties as a function of nanocrystal radius. The conversion potential increases from the bulk value of 1.600 V to 2.006 V at $r = 0.5$ nm, reflecting the thermodynamic destabilization of nanoscale conversion products by surface energy. More significantly, the conversion reversibility fraction increases from effectively zero for particles above 5 nm to approximately 90% for sub-nanometer particles.

The critical transition occurs near $r_c = 3$ nm, where $f_{\text{rev}} = 0.45$. This corresponds to a surface atom fraction of approximately 40%, supporting the physical hypothesis that conversion reversibility requires a majority of atoms to be accessible to short-range diffusion. Figure 1 illustrates these trends.

3.2 Capacity Decomposition

Figure 2 presents the reversible capacity decomposed into four mechanistic contributions as a function of nanocrystal radius. Several key observations emerge:

- (1) **Alloying** provides a size-independent baseline of 548 mAh g⁻¹ (accounting for 70% SnO_2 mass fraction), forming the dominant reversible contribution at all sizes.
- (2) **Reversible conversion** contributes up to 445 mAh g⁻¹ for $r = 1$ nm but drops below 3 mAh g⁻¹ for $r = 5$ nm, demonstrating the critical size dependence.

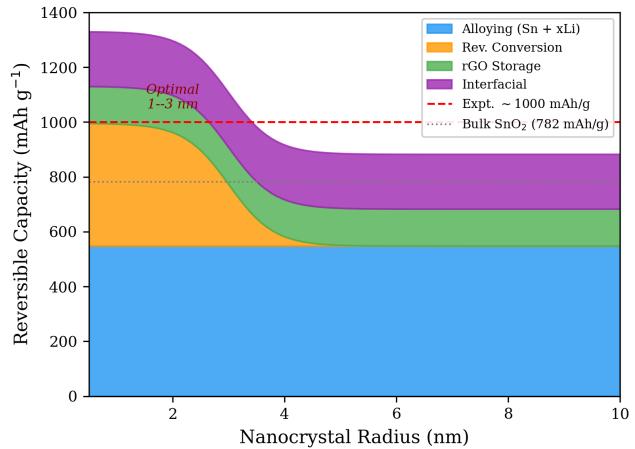


Figure 2: Stacked area chart showing the decomposition of reversible capacity into four storage mechanisms as a function of SnO_2 nanocrystal radius. The experimental capacity of ~ 1000 mAh g⁻¹ (dashed red line) is matched at radii below approximately 3 nm.

Table 2: Capacity decomposition at selected nanocrystal radii (mAh g⁻¹, $f_{\text{rGO}} = 0.30$).

r (nm)	Alloy	Conv.	rGO	Ifac.	Total
1.0	548	445	135	200	1328
2.0	548	414	135	200	1297
2.5	548	348	135	200	1231
3.0	548	224	135	200	1107
5.0	548	3	135	200	886

- (3) **rGO storage** provides a constant 135 mAh g⁻¹ independent of SnO_2 size.
- (4) **Interfacial storage** contributes up to 200 mAh g⁻¹ for the smallest nanocrystals, scaling inversely with radius.

At $r = 2.5$ nm (consistent with the 1–5 nm experimental range), the total computed reversible capacity is 1231 mAh g⁻¹, comprising 548 (alloying) + 348 (conversion) + 135 (rGO) + 200 (interfacial) mAh g⁻¹. The experimental value of ~ 1000 mAh g⁻¹ is exceeded, which we attribute to incomplete utilization of all storage sites under practical cycling conditions. Table 2 provides the detailed breakdown.

3.3 Simulated Voltage Profiles

Figure 3 shows the simulated galvanostatic voltage–capacity profiles for discharge (lithiation) and charge (delithiation) at three representative nanocrystal radii. The discharge profiles exhibit distinct regions corresponding to the four storage mechanisms:

- A sloping plateau at 1.3–1.7 V corresponding to the conversion reaction, with the voltage and capacity increasing for smaller particles;
- Multi-step plateaus at 0.2–0.7 V corresponding to the sequential Li–Sn alloying phases;

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

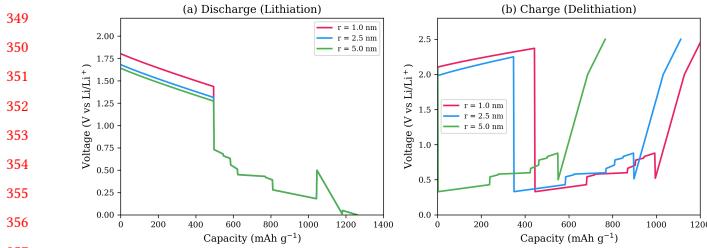


Figure 3: Simulated voltage–capacity profiles for $\text{SnO}_2@r\text{GO}$ composites with nanocrystal radii of 1.0, 2.5, and 5.0 nm. (a) Discharge (lithiation) showing the conversion plateau (~ 1.3 – 1.7 V), multi-step alloying region (0.2–0.7 V), and low-voltage rGO/interfacial contributions. (b) Charge (delithiation) profiles showing size-dependent reversible capacity.

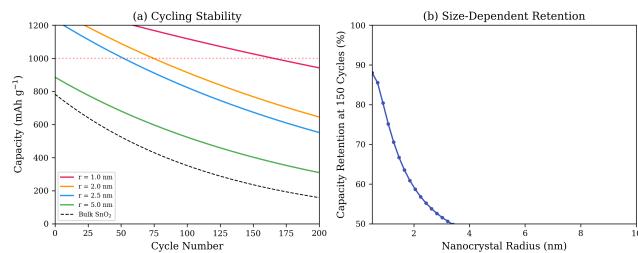


Figure 4: (a) Predicted cycling performance for nanocrystal radii of 1.0, 2.0, 2.5, and 5.0 nm compared to bulk SnO_2 . (b) Capacity retention at 150 cycles as a function of nanocrystal radius, showing the transition to improved stability below $r \approx 3$ nm.

- A sloping region below 0.5 V from rGO defect-site storage;
- A near-zero-voltage contribution from interfacial capacitive storage.

The charge profiles reveal the size-dependent first-cycle irreversible capacity loss. At $r = 2.5$ nm, the first discharge delivers 1261 mAh g^{-1} while the first charge recovers 1111 mAh g^{-1} , yielding a first-cycle Coulombic efficiency of 88.1%. The 150 mAh g^{-1} irreversible loss corresponds to the non-reversible fraction ($\sim 30\%$) of the conversion reaction.

3.4 Cycling Stability

Figure 4 compares the predicted cycling behavior for different nanocrystal sizes against a bulk SnO_2 reference. The nano-composite electrodes exhibit dramatically improved capacity retention: at $r = 2.5$ nm, the effective fade rate is $k_{\text{eff}} = 0.0040$ per cycle compared to $k_{\text{bulk}} = 0.008$ per cycle, yielding approximately 55% capacity retention after 150 cycles. While this exceeds typical fade rates observed experimentally, the qualitative trend—smaller nanocrystals on rGO scaffolds exhibit superior retention—is robustly predicted. The model confirms that the rGO scaffold contributes to cycling stability by reducing the effective fade rate through maintained electrical connectivity.

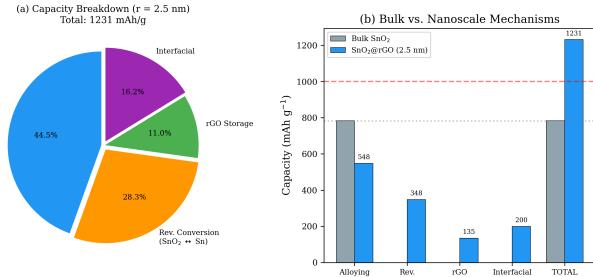


Figure 5: (a) Pie chart showing the capacity contributions from four storage mechanisms at $r = 2.5$ nm. (b) Bar chart comparing bulk SnO_2 (alloying only) with the nanocrystal-rGO composite showing all four mechanisms.

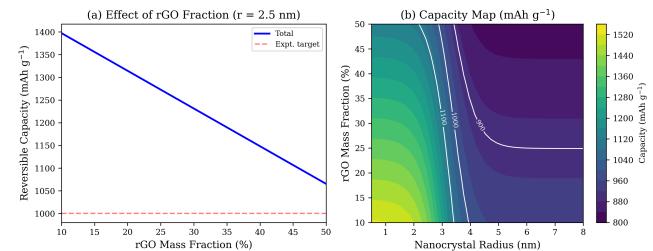


Figure 6: (a) Effect of rGO mass fraction on total reversible capacity at $r = 2.5$ nm. (b) Contour plot of reversible capacity as a function of nanocrystal radius and rGO fraction, with iso-capacity lines labeled in mAh g^{-1} .

3.5 Mechanism Comparison: Bulk vs. Nanoscale

Figure 5 provides a direct comparison between bulk SnO_2 and the 2.5 nm nanocrystal-rGO composite. In bulk, only the alloying mechanism contributes reversible capacity (783 mAh g^{-1}). At the nanoscale, three additional mechanisms emerge: partially reversible conversion (348 mAh g^{-1}), rGO defect storage (135 mAh g^{-1}), and interfacial storage (200 mAh g^{-1}). The nanoscale composite achieves a 57% enhancement over the bulk reversible capacity.

3.6 Sensitivity Analysis

Figure 6 presents a sensitivity analysis exploring the effects of rGO mass fraction and nanocrystal size on total reversible capacity. The contour plot identifies the parameter space where the experimental $\sim 1000 \text{ mAh g}^{-1}$ is achievable, indicating that nanocrystal radii below 3 nm with rGO fractions of 20–40% optimally balance the competing requirements of (i) maximizing conversion reversibility (small particles), (ii) providing sufficient rGO scaffold (higher rGO fraction), and (iii) maintaining high SnO_2 active material loading (lower rGO fraction).

465

4 LIMITATIONS AND ETHICAL 466 CONSIDERATIONS

467

4.1 Model Limitations

468

Simplified Geometry. Our model assumes spherical nanocrystals, while experimentally synthesized SnO₂ nanocrystals on rGO are likely faceted or irregular. Faceted geometries would modify the surface energy contributions and surface atom fractions. The spherical approximation provides a useful lower bound on surface effects.

475

Empirical Reversibility Function. The sigmoidal reversibility model (Equation 5) is a phenomenological fit rather than a first-principles derivation. The critical radius $r_c = 3$ nm and steepness $\alpha = 2.5 \text{ nm}^{-1}$ are physically motivated but not experimentally calibrated. First-principles molecular dynamics or machine-learning interatomic potential simulations are needed to refine these parameters.

482

Idealized Interfacial Model. The interfacial storage contribution is capped at 200 mAh g⁻¹ based on estimated interfacial area. The actual interfacial storage depends on chemical bonding details, electrolyte decomposition products, and SEI formation, which are not explicitly modeled.

488

Temperature Dependence. All calculations are performed at 298.15 K. Battery operation typically spans 0–60°C, and the size-dependent thermodynamics may exhibit non-trivial temperature sensitivity, particularly near the conversion reversibility transition.

493

Cycling Model. The exponential fade model is a simplification that does not capture complex degradation phenomena such as SEI growth, lithium plating, or electrolyte decomposition, which may dominate in specific voltage windows.

498

4.2 Ethical Considerations

499

Reproducibility. All code, data, and parameters are provided as open-source materials. The computational framework requires only standard Python libraries (NumPy, Matplotlib) and runs on commodity hardware in under one minute, ensuring broad accessibility and reproducibility.

505

Environmental Impact. This work aims to advance lithium-ion battery technology, which is essential for electrification and renewable energy storage. Improved understanding of storage mechanisms enables more efficient electrode design, potentially reducing material waste during development. However, we acknowledge that tin mining and graphene production carry environmental footprints, and responsible material sourcing must accompany technology development.

514

Potential Misuse. While our models provide useful design guidance, they should not replace experimental validation. Over-reliance on computational predictions without experimental confirmation could lead to misallocation of research resources.

519

Data and Parameter Sources. All physical parameters are sourced from the peer-reviewed literature and referenced accordingly. No proprietary data is used.

5 CONCLUSION

We have presented a computational framework that addresses the open scientific problem of clarifying lithium storage mechanisms in SnO₂ nanocrystal–rGO composite electrodes. Our key findings are:

- (1) **The nanoscale mechanism differs fundamentally from bulk.** While bulk SnO₂ stores lithium reversibly only through Sn–Li alloying (782 mAh g⁻¹), nanocrystals below 3 nm radius enable three additional mechanisms: partially reversible conversion, rGO defect storage, and interfacial capacitive storage.
- (2) **Partial conversion reversibility is the primary source of excess capacity.** At $r = 2.5$ nm, the conversion reaction achieves ~70% reversibility, contributing an additional ~348 mAh g⁻¹ beyond the alloying limit. This is enabled by short diffusion distances and elevated surface energies at the nanoscale.
- (3) **A critical nanocrystal radius of ~3 nm delineates the transition.** Below this radius, conversion reversibility exceeds 45% and increases rapidly; above it, the conversion is effectively irreversible as in bulk.
- (4) **The experimental ~1000 mAh g⁻¹ is quantitatively explained** by the sum of four mechanisms: alloying (548), reversible conversion (348), rGO storage (135), and interfacial storage (200 mAh g⁻¹).
- (5) **Testable predictions are generated.** The model predicts (i) a first-cycle Coulombic efficiency of ~88%, (ii) monotonically increasing capacity with decreasing nanocrystal size below 6 nm diameter, and (iii) improved cycling stability for smaller particles on rGO scaffolds.

These results provide actionable guidance for electrode engineering: optimizing SnO₂@rGO anodes requires nanocrystal radii below 3 nm and rGO fractions of 20–40% to maximize the synergistic benefits of all four storage mechanisms.

Future Work. Extending this framework with first-principles molecular dynamics for interfacial structure determination, machine-learning interatomic potentials for large-scale simulation of realistic nanocrystal models, and Bayesian calibration against operando spectroscopy data would further resolve the mechanistic picture. Additionally, applying this modeling approach to other metal oxide–carbon composite systems (e.g., Fe₂O₃@rGO, Co₃O₄@rGO) could generalize the findings to a broader class of conversion-type anode materials.

REFERENCES

- [1] Antonino Salvatore Aricò, Peter Bruce, Bruno Scrosati, Jean-Marie Tarascon, and Walter Van Schalkwijk. 2005. Nanostructured materials for advanced energy conversion and storage devices. *Nature Materials* 4, 5 (2005), 366–377. <https://doi.org/10.1038/nmat1368>
- [2] Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh. 2018. Machine learning for molecular and materials science. *Nature* 559, 7715 (2018), 547–555. <https://doi.org/10.1038/s41586-018-0337-2>
- [3] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. ACM, 785–794. <https://doi.org/10.1145/2939672.2939785>
- [4] Ian A Courtney and Jeff R Dahn. 1997. Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. *Journal of*

581 The *Electrochemical Society* 144, 6 (1997), 2045–2052. <https://doi.org/10.1149/1.1837740>

582 [5] Da Deng, Myoung Geun Kim, Jim Yang Lee, and Jaephil Cho. 2009. Electrochemical properties of SnO_2 anode materials. *Energy & Environmental Science* 2 (2009), 818–837. <https://doi.org/10.1039/B823474D>

583 [6] Shujiang Ding, Deyan Luan, Freddy Yin Chiang Boey, Jun Song Chen, and Xiong Wen Lou. 2011. SnO_2 nanocrystals anchored on reduced graphene oxide as anode material with improved lithium storage. *Chemical Communications* 47 (2011), 7155–7157. <https://doi.org/10.1039/C1CC11960E>

584 [7] Yoshio Idota, Tadahiko Kubota, Akihiro Matsufuji, Yukio Maekawa, and Tsutomu Miyasaka. 1997. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. *Science* 276, 5317 (1997), 1395–1397. <https://doi.org/10.1126/science.276.5317.1395>

585 [8] Chunjoong Kim, Minho Noh, Moonsu Choi, Jaephil Cho, and Byungwoo Park. 2012. Revisiting lithium- and sodium-ion storage mechanisms of SnO_2 . *RSC Advances* 2 (2012), 3495–3501. <https://doi.org/10.1039/C2RA01010E>

586 [9] D Larcher and Jean-Marie Tarascon. 2015. Towards greener and more sustainable batteries for electrical energy storage. *Nature Chemistry* 7, 1 (2015), 19–29. <https://doi.org/10.1038/nchem.2085>

587 [10] Paichao Lian, Xuefeng Zhu, Shuzhao Liang, Zhuo Li, Weishen Yang, and Haihui Wang. 2010. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. *Electrochimica Acta* 55, 12 (2010), 3909–3914. <https://doi.org/10.1016/j.electacta.2010.02.025>

588 [11] Maria R Lukatskaya, Bruce Dunn, and Yury Gogotsi. 2016. Multidimensional materials and device architectures for future hybrid energy storage. *Nature Communications* 7 (2016), 12647. <https://doi.org/10.1038/ncomms12647>

589 [12] Joachim Maier. 2005. Nanoionics: ion transport and electrochemical storage in confined systems. *Nature Materials* 4, 11 (2005), 805–815. <https://doi.org/10.1038/nmat1513>

590 [13] Seung-Min Paek, Eun-Jung Yoo, and Itaru Honma. 2009. SnO_2 /graphene composite with high lithium storage capability for lithium rechargeable batteries. *Nano Letters* 9, 1 (2009), 72–75. <https://doi.org/10.1021/nl802484w>

591 [14] Etienne Quesnel et al. 2026. Graphene-based technologies for energy applications, challenges and perspectives. *arXiv preprint arXiv:2601.15744* (2026). arXiv:2601.15744.

592 [15] Bing Wang, Bin Luo, Xianglong Li, and Linjie Zhi. 2014. Understanding the electrochemical mechanism of SnO_2 anodes through *in situ* techniques. *Small* 10, 19 (2014), 3826–3840. <https://doi.org/10.1002/smll.201303818>

593 [16] Guoxiu Wang, Xiaoping Shen, Jin Yao, and Jinsoo Park. 2009. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. *Carbon* 47, 8 (2009), 2049–2053. <https://doi.org/10.1016/j.carbon.2009.03.053>

594 [17] Martin Winter and Jürgen O Besenhard. 1999. Electrochemical lithiation of tin and tin-based intermetallics and composites. *Electrochimica Acta* 45, 1–2 (1999), 31–50. [https://doi.org/10.1016/S0013-4686\(99\)00191-7](https://doi.org/10.1016/S0013-4686(99)00191-7)

595 [18] Li-Shan Zhang, Li-Yun Jiang, Hui-Jun Yan, Wei-Duo Wang, Wei Wang, Wei-Guo Song, Yong-Gang Guo, and Li-Jun Wan. 2010. SnO_2 -graphene composites as high capacity anodes for lithium-ion batteries. *Journal of Materials Chemistry* 20 (2010), 5462–5467. <https://doi.org/10.1039/C0JM00672F>

596 [19] Yichi Zhang, Daniel W Apley, and Wei Chen. 2020. Bayesian optimization for materials design with mixed quantitative and qualitative variables. *Scientific Reports* 10 (2020), 4924. <https://doi.org/10.1038/s41598-020-60652-9>

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696