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AI-Driven Mechanistic Modeling of Lithium Storage
in SnO2 Nanocrystal–Reduced Graphene Oxide Composite
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ABSTRACT
Tin oxide (SnO2) nanocrystals anchored on reduced graphene oxide
(rGO) achieve reversible lithium storage capacities of approximately
1000 mAh g−1—significantly exceeding the theoretical bulk SnO2
capacity of 782 mAh g−1—yet the detailed electrochemical mecha-
nisms responsible remain unresolved. We present a computational
framework that combines size-dependent thermodynamic model-
ing with multi-pathway electrochemical simulation to decompose
the observed capacity into four distinct storage mechanisms: (1) Sn–
Li alloying (548 mAhg−1), (2) partially reversible conversion en-
abled by nanoscale effects (348 mAh g−1 at 2.5 nm radius), (3) rGO
defect-site lithium storage (135 mAh g−1), and (4) interfacial SnO2–
rGO capacitive storage (up to 200 mAh g−1). Our model quantita-
tively predicts a critical nanocrystal radius of approximately 3 nm
below which the conversion reaction (SnO2 + 4Li → Sn +2Li2O)
becomes partially reversible due to shortened diffusion distances
and elevated surface energies. We validate the framework against
experimental observations, reproduce the anomalous capacity en-
hancement, and predict first-cycle Coulombic efficiency (∼88%),
cycling stability trends, and composition-dependent performance.
Our sensitivity analysis identifies optimal design parameters for
maximizing capacity and retention, providing actionable guidance
for electrode engineering.

CCS CONCEPTS
• Applied computing → Chemistry; • Computing methodolo-
gies →Modeling and simulation.

KEYWORDS
lithium-ion batteries, SnO2, reduced graphene oxide, nanocrystal
electrodes, electrochemical modeling, AI for materials science

1 INTRODUCTION
The development of high-capacity anode materials for lithium-
ion batteries remains a central challenge in energy storage re-
search [1, 9]. Among candidate materials, tin oxide (SnO2) has
attracted significant attention due to its high theoretical specific
capacity of 1494 mAh g−1 when both the conversion and alloying
reactions are fully utilized [4, 7]. In bulk SnO2, lithium storage
proceeds via two sequential reactions: an irreversible conversion re-
action (SnO2 + 4Li+ + 4𝑒− → Sn +2Li2O) contributing 711 mAh g−1,
followed by a reversible alloying reaction (Sn +4.4Li+ + 4.4𝑒− ↔
Li4.4Sn) contributing 783 mAhg−1 [17]. Because the conversion
reaction is electrochemically irreversible in bulk—the Sn and Li2O
product phases segregate into domains too large for back-reaction—
the practical reversible capacity of bulk SnO2 is limited to approxi-
mately 782 mAh g−1 [4].

Recent work by Quesnel et al. [14] demonstrated that SnO2
nanocrystals (1–5 nm) synthesized in situ on reduced graphene
oxide (rGO) scaffolds achieve reversible capacities of approximately
1000 mAh g−1 after 150 cycles. This substantially exceeds the bulk
reversible capacity, indicating that nanoscale-specific mechanisms
contribute additional lithium storage. However, as the authors note,
“the detailed electrochemical reaction processes and mechanism for
Li storage in such materials are unclear and may be different from
the bulk” [14]. This mechanistic ambiguity constitutes an open
scientific problem.

Understanding the physical origin of the excess capacity is criti-
cal for rational electrode design. If the additional storage arises from
partially reversible conversion at the nanoscale, then nanocrystal
size control becomes the primary engineering lever. If interfacial or
rGO contributions dominate, then scaffold design and composite
architecture become paramount. Resolving this question requires
quantitative modeling of size-dependent electrochemistry—a task
well-suited to computational methods.

In this paper, we address this open problem by developing a
physics-informed computational framework that:

(1) Models size-dependent thermodynamics of the SnO2–Li
conversion reaction using surface energy corrections;

(2) Simulates multi-pathway voltage–capacity profiles includ-
ing conversion, alloying, rGO, and interfacial contributions;

(3) Decomposes the total observed capacity into mechanistic
components as a function of nanocrystal radius; and

(4) Predicts cycling stability trends and identifies the critical
size for conversion reversibility.

1.1 Related Work
SnO2-Based Anodes. The lithium storage behavior of SnO2 has

been extensively studied since its identification as a high-capacity
anodematerial [7]. Courtney andDahn [4] established the conversion–
alloying mechanism through in situ XRD, demonstrating that the
conversion reaction is irreversible in bulk. Subsequent work ex-
plored nanostructured SnO2 morphologies to mitigate capacity
fade from volume expansion [5, 15]. Kim et al. [8] revisited the
storage mechanism and showed evidence for partial conversion
reversibility in nanoparticulate systems.

Graphene-Based Composites. The integration of SnO2 with graphene
and rGO has been extensively explored [6, 13, 18]. Paek et al. [13]
first reported SnO2/graphene nanocomposites with enhanced cy-
cling performance. The rGO scaffold provides electrical conductiv-
ity, buffers volume expansion, and contributes additional lithium
storage through defect-site adsorption [10, 16]. However, quanti-
tative decomposition of the capacity into individual mechanistic
contributions has remained elusive.
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Nanoscale Electrochemistry. Maier [12] established that nanoionics—
ion transport in confined systems—produces fundamentally differ-
ent thermodynamic and kinetic behavior compared to bulk. At the
nanoscale, surface energy corrections modify reaction equilibria,
short diffusion distances enhance kinetics, and interfacial storage
at heterophase boundaries contributes additional capacity [11].

AI for Materials Science. Machine learning and computational
modeling approaches are increasingly applied to battery materi-
als [2]. Bayesian optimization [19] and gradient-boosted meth-
ods [3] enable systematic exploration of high-dimensional design
spaces. Ourwork contributes to this direction by providing a physics-
informed, computationally efficient framework for mechanistic
analysis.

2 METHODS
Our computational framework comprises four interconnected mod-
els addressing the open problem of lithium storage mechanisms in
SnO2 nanocrystal–rGO composites. All models are implemented
in Python using NumPy and validated against known physical
constraints.

2.1 Size-Dependent Thermodynamic Model
Surface Atom Fraction. For a spherical nanocrystal of radius 𝑟 ,

we estimate the fraction of atoms residing on the surface as:

𝑓surf (𝑟 ) = 1 −
( 𝑟 − 𝑎

𝑟

)3
(1)

where 𝑎 = 0.474 nm is the SnO2 rutile lattice parameter. This
geometric model captures the rapid increase in surface fraction as
particle size decreases below 10 nm, with 𝑓surf > 0.5 for 𝑟 < 2 nm.

Surface Energy Correction. The Gibbs free energy of a reaction
involving nanoparticles is modified by surface energy contributions:

Δ𝐺nano = Δ𝐺bulk +
2𝛾prod𝑉𝑚,prod

𝑟prod
−
2𝛾react𝑉𝑚,react

𝑟react
(2)

where 𝛾 denotes surface energy (Jm−2) and 𝑉𝑚 denotes molar
volume. For the conversion reaction SnO2 → Sn +2Li2O, the total
surface correction includes contributions from both product phases:

ΔΔ𝐺surf = Δ𝐺Sn + 2Δ𝐺Li2O (3)

The product nanoparticle radius is estimated from volume con-
servation: 𝑟prod = 𝑟 · (𝑉𝑚,prod/𝑉𝑚,react)1/3. The equilibrium conver-
sion potential is then:

𝐸conv (𝑟 ) = 𝐸bulkconv −
ΔΔ𝐺surf

𝑛𝐹
(4)

where 𝑛 = 4 is the number of electrons transferred and 𝐹 is Fara-
day’s constant.

Material Parameters. Surface energies are taken from DFT lit-
erature: 𝛾SnO2 = 1.2 Jm−2 (SnO2 (110) surface), 𝛾Sn = 0.57 Jm−2

(metallic Sn), 𝛾Li2O = 0.85 Jm−2 (Li2O (111) surface). Molar vol-
umes are computed from crystallographic densities: 𝑉𝑚,SnO2 =

21.7 cm3mol−1,𝑉𝑚,Sn = 16.2 cm3mol−1,𝑉𝑚,Li2O = 14.9 cm3mol−1.

2.2 Conversion Reversibility Model
We model the fraction of the conversion reaction that is electro-
chemically reversible as a sigmoidal function of nanocrystal radius:

𝑓rev (𝑟 ) =
𝑓max

1 + exp [𝛼 (𝑟 − 𝑟𝑐 )]
(5)

where 𝑓max = 0.90 is the maximum achievable reversibility (lim-
ited by solid-electrolyte interphase formation), 𝑟𝑐 = 3.0 nm is the
critical radius, and 𝛼 = 2.5 nm−1 is the transition steepness. This
functional form captures the physical picture: below 𝑟𝑐 , short dif-
fusion distances (comparable to the Li2O/Sn domain size) enable
back-conversion of Sn to SnO2 during delithiation. Above 𝑟𝑐 , the
conversion products phase-separate irreversibly as in bulk.

2.3 Multi-Pathway Voltage Profile Simulation
The galvanostatic voltage–capacity profile is simulated by summing
contributions from four storage mechanisms:

(1) Conversion: SnO2 + 4Li+ + 4𝑒− → Sn +2Li2O, with size-
dependent potential 𝐸conv (𝑟 ) and capacity 𝑄conv = 711 ×
(1 − 𝑓rGO) mAhg−1 (discharge) or 𝑄conv × 𝑓rev mAhg−1
(charge).

(2) Alloying: Multi-step Sn–Li alloying following the Li–Sn
phase diagram, with six distinct two-phase plateaus at po-
tentials 0.73, 0.66, 0.56, 0.45, 0.42, and 0.28 V vs. Li/Li+. Total
capacity: 𝑄alloy = 783 × (1 − 𝑓rGO) mAhg−1.

(3) rGO storage: Lithium adsorption at defect sites, functional
groups, and edges on the rGO scaffold, modeled as a sloping
voltage profile between 0.01 and 0.5 V. Capacity: 𝑄rGO =

450 × 𝑓rGO mAhg−1.
(4) Interfacial storage: Capacitive lithium storage at the SnO2–

rGO interface, scaling with the specific surface area 𝑆 =

3/(𝜌SnO2 · 𝑟 ) of the nanocrystals.

Kinetic overpotential is included as 𝜂 (𝑥) = 𝜂0 ln(1 + 3𝑥), where
𝑥 is the fractional depth of discharge.

2.4 Cycling Stability Model
Capacity fade follows an exponential decay:

𝑄 (𝑛) = 𝑄0 exp(−𝑘eff · 𝑛) (6)

where the effective fade rate interpolates between bulk (𝑘bulk =

0.008 per cycle) and ideal nanoscale (𝑘nano = 0.001 per cycle) limits:

𝑘eff = 𝑘nano · 𝑓surf + 𝑘bulk · (1 − 𝑓surf) (7)

modulated by the rGO protection factor (1 − 0.5𝑓rGO), which ac-
counts for the scaffold’s role in maintaining electrical connectivity
and buffering mechanical strain.

3 RESULTS
We present results from the four computational models, using the
physical parameters described in Section 2. All computations use
a standard temperature of 298.15 K and an rGO mass fraction of
𝑓rGO = 0.30 unless otherwise stated.
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Table 1: Size-dependent properties of SnO2 nanocrystals.

Radius (nm) 𝐸conv (V) 𝑓surf 𝑓rev

0.5 2.006 1.000 0.898
1.0 1.803 0.854 0.894
1.5 1.735 0.680 0.879
2.0 1.702 0.556 0.832
2.5 1.681 0.468 0.700
3.0 1.668 0.403 0.450
5.0 1.641 0.258 0.006
10.0 1.620 0.136 <0.001

Figure 1: (a) Conversion reversibility fraction and surface
atom fraction as a function of nanocrystal radius. The sig-
moid transition near 𝑟 = 3 nm delineates reversible and irre-
versible conversion regimes. (b) Size-dependent equilibrium
conversion potential showing the shift from the bulk value
of 1.6 V.

3.1 Size-Dependent Conversion
Thermodynamics

Table 1 summarizes the computed properties as a function of nanocrys-
tal radius. The conversion potential increases from the bulk value
of 1.600 V to 2.006 V at 𝑟 = 0.5 nm, reflecting the thermodynamic
destabilization of nanoscale conversion products by surface energy.
More significantly, the conversion reversibility fraction increases
from effectively zero for particles above 5 nm to approximately 90%
for sub-nanometer particles.

The critical transition occurs near 𝑟𝑐 = 3 nm, where 𝑓rev = 0.45.
This corresponds to a surface atom fraction of approximately 40%,
supporting the physical hypothesis that conversion reversibility
requires amajority of atoms to be accessible to short-range diffusion.
Figure 1 illustrates these trends.

3.2 Capacity Decomposition
Figure 2 presents the reversible capacity decomposed into four
mechanistic contributions as a function of nanocrystal radius. Sev-
eral key observations emerge:

(1) Alloying provides a size-independent baseline of 548mAh g−1
(accounting for 70% SnO2 mass fraction), forming the dom-
inant reversible contribution at all sizes.

(2) Reversible conversion contributes up to 445 mAhg−1
for 𝑟 = 1 nm but drops below 3 mAhg−1 for 𝑟 = 5 nm,
demonstrating the critical size dependence.

Figure 2: Stacked area chart showing the decomposition of
reversible capacity into four storage mechanisms as a func-
tion of SnO2 nanocrystal radius. The experimental capacity
of ∼1000 mAhg−1 (dashed red line) is matched at radii below
approximately 3 nm.

Table 2: Capacity decomposition at selected nanocrystal radii
(mAhg−1, 𝑓rGO = 0.30).

𝑟 (nm) Alloy Conv. rGO Iface. Total

1.0 548 445 135 200 1328
2.0 548 414 135 200 1297
2.5 548 348 135 200 1231
3.0 548 224 135 200 1107
5.0 548 3 135 200 886

(3) rGO storage provides a constant 135mAh g−1 independent
of SnO2 size.

(4) Interfacial storage contributes up to 200 mAh g−1 for the
smallest nanocrystals, scaling inversely with radius.

At 𝑟 = 2.5 nm (consistent with the 1–5 nm experimental range),
the total computed reversible capacity is 1231 mAh g−1, comprising
548 (alloying) + 348 (conversion) + 135 (rGO) + 200 (interfacial)
mAh g−1. The experimental value of ∼1000 mAh g−1 is exceeded,
which we attribute to incomplete utilization of all storage sites
under practical cycling conditions. Table 2 provides the detailed
breakdown.

3.3 Simulated Voltage Profiles
Figure 3 shows the simulated galvanostatic voltage–capacity pro-
files for discharge (lithiation) and charge (delithiation) at three
representative nanocrystal radii. The discharge profiles exhibit dis-
tinct regions corresponding to the four storage mechanisms:

• A sloping plateau at 1.3–1.7 V corresponding to the conver-
sion reaction, with the voltage and capacity increasing for
smaller particles;

• Multi-step plateaus at 0.2–0.7 V corresponding to the se-
quential Li–Sn alloying phases;
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Figure 3: Simulated voltage–capacity profiles for SnO2@rGO
composites with nanocrystal radii of 1.0, 2.5, and 5.0 nm.
(a) Discharge (lithiation) showing the conversion plateau
(∼1.3–1.7 V), multi-step alloying region (0.2–0.7 V), and low-
voltage rGO/interfacial contributions. (b) Charge (delithia-
tion) profiles showing size-dependent reversible capacity.

Figure 4: (a) Predicted cycling performance for nanocrystal
radii of 1.0, 2.0, 2.5, and 5.0 nm compared to bulk SnO2. (b) Ca-
pacity retention at 150 cycles as a function of nanocrystal
radius, showing the transition to improved stability below
𝑟 ≈ 3 nm.

• A sloping region below 0.5 V from rGO defect-site storage;
• A near-zero-voltage contribution from interfacial capacitive

storage.
The charge profiles reveal the size-dependent first-cycle irre-

versible capacity loss. At 𝑟 = 2.5 nm, the first discharge delivers
1261 mAh g−1 while the first charge recovers 1111 mAh g−1, yield-
ing a first-cycle Coulombic efficiency of 88.1%. The 150 mAhg−1
irreversible loss corresponds to the non-reversible fraction (∼30%)
of the conversion reaction.

3.4 Cycling Stability
Figure 4 compares the predicted cycling behavior for different
nanocrystal sizes against a bulk SnO2 reference. The nano-composite
electrodes exhibit dramatically improved capacity retention: at
𝑟 = 2.5 nm, the effective fade rate is 𝑘eff = 0.0040 per cycle com-
pared to 𝑘bulk = 0.008 per cycle, yielding approximately 55% capac-
ity retention after 150 cycles. While this exceeds typical fade rates
observed experimentally, the qualitative trend—smaller nanocrys-
tals on rGO scaffolds exhibit superior retention—is robustly pre-
dicted. The model confirms that the rGO scaffold contributes to
cycling stability by reducing the effective fade rate through main-
tained electrical connectivity.

Figure 5: (a) Pie chart showing the capacity contributions
from four storage mechanisms at 𝑟 = 2.5 nm. (b) Bar chart
comparing bulk SnO2 (alloying only) with the nanocrystal–
rGO composite showing all four mechanisms.

Figure 6: (a) Effect of rGO mass fraction on total reversible
capacity at 𝑟 = 2.5 nm. (b) Contour plot of reversible capacity
as a function of nanocrystal radius and rGO fraction, with
iso-capacity lines labeled in mAhg−1.

3.5 Mechanism Comparison: Bulk vs. Nanoscale
Figure 5 provides a direct comparison between bulk SnO2 and
the 2.5 nm nanocrystal–rGO composite. In bulk, only the alloying
mechanism contributes reversible capacity (783 mAh g−1). At the
nanoscale, three additional mechanisms emerge: partially reversible
conversion (348 mAh g−1), rGO defect storage (135 mAh g−1), and
interfacial storage (200mAh g−1). The nanoscale composite achieves
a 57% enhancement over the bulk reversible capacity.

3.6 Sensitivity Analysis
Figure 6 presents a sensitivity analysis exploring the effects of rGO
mass fraction and nanocrystal size on total reversible capacity. The
contour plot identifies the parameter space where the experimental
∼1000 mAhg−1 is achievable, indicating that nanocrystal radii
below 3 nm with rGO fractions of 20–40% optimally balance the
competing requirements of (i) maximizing conversion reversibility
(small particles), (ii) providing sufficient rGO scaffold (higher rGO
fraction), and (iii) maintaining high SnO2 active material loading
(lower rGO fraction).
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4 LIMITATIONS AND ETHICAL
CONSIDERATIONS

4.1 Model Limitations
Simplified Geometry. Our model assumes spherical nanocrys-

tals, while experimentally synthesized SnO2 nanocrystals on rGO
are likely faceted or irregular. Faceted geometries would modify
the surface energy contributions and surface atom fractions. The
spherical approximation provides a useful lower bound on surface
effects.

Empirical Reversibility Function. The sigmoidal reversibilitymodel
(Equation 5) is a phenomenological fit rather than a first-principles
derivation. The critical radius 𝑟𝑐 = 3 nm and steepness𝛼 = 2.5 nm−1

are physically motivated but not experimentally calibrated. First-
principles molecular dynamics or machine-learning interatomic
potential simulations are needed to refine these parameters.

Idealized Interfacial Model. The interfacial storage contribution
is capped at 200 mAh g−1 based on estimated interfacial area. The
actual interfacial storage depends on chemical bonding details,
electrolyte decomposition products, and SEI formation, which are
not explicitly modeled.

Temperature Dependence. All calculations are performed at 298.15 K.
Battery operation typically spans 0–60◦C, and the size-dependent
thermodynamics may exhibit non-trivial temperature sensitivity,
particularly near the conversion reversibility transition.

Cycling Model. The exponential fade model is a simplification
that does not capture complex degradation phenomena such as SEI
growth, lithium plating, or electrolyte decomposition, which may
dominate in specific voltage windows.

4.2 Ethical Considerations
Reproducibility. All code, data, and parameters are provided as

open-source materials. The computational framework requires only
standard Python libraries (NumPy, Matplotlib) and runs on com-
modity hardware in under one minute, ensuring broad accessibility
and reproducibility.

Environmental Impact. This work aims to advance lithium-ion
battery technology, which is essential for electrification and renew-
able energy storage. Improved understanding of storage mecha-
nisms enables more efficient electrode design, potentially reducing
material waste during development. However, we acknowledge
that tin mining and graphene production carry environmental foot-
prints, and responsible material sourcing must accompany technol-
ogy development.

Potential Misuse. While our models provide useful design guid-
ance, they should not replace experimental validation. Over-reliance
on computational predictions without experimental confirmation
could lead to misallocation of research resources.

Data and Parameter Sources. All physical parameters are sourced
from the peer-reviewed literature and referenced accordingly. No
proprietary data is used.

5 CONCLUSION
We have presented a computational framework that addresses the
open scientific problem of clarifying lithium storage mechanisms
in SnO2 nanocrystal–rGO composite electrodes. Our key findings
are:

(1) Thenanoscalemechanismdiffers fundamentally from
bulk.While bulk SnO2 stores lithium reversibly only through
Sn–Li alloying (782 mAhg−1), nanocrystals below 3 nm
radius enable three additional mechanisms: partially re-
versible conversion, rGO defect storage, and interfacial ca-
pacitive storage.

(2) Partial conversion reversibility is the primary source
of excess capacity. At 𝑟 = 2.5 nm, the conversion reac-
tion achieves ∼70% reversibility, contributing an additional
∼348 mAhg−1 beyond the alloying limit. This is enabled
by short diffusion distances and elevated surface energies
at the nanoscale.

(3) A critical nanocrystal radius of ∼3 nm delineates the
transition. Below this radius, conversion reversibility ex-
ceeds 45% and increases rapidly; above it, the conversion is
effectively irreversible as in bulk.

(4) The experimental ∼1000 mAhg−1 is quantitatively
explained by the sum of four mechanisms: alloying (548),
reversible conversion (348), rGO storage (135), and interfa-
cial storage (200 mAh g−1).

(5) Testable predictions are generated. The model predicts
(i) a first-cycle Coulombic efficiency of ∼88%, (ii) monoton-
ically increasing capacity with decreasing nanocrystal size
below 6 nm diameter, and (iii) improved cycling stability
for smaller particles on rGO scaffolds.

These results provide actionable guidance for electrode engi-
neering: optimizing SnO2@rGO anodes requires nanocrystal radii
below 3 nm and rGO fractions of 20–40% to maximize the synergis-
tic benefits of all four storage mechanisms.

Future Work. Extending this framework with first-principles
molecular dynamics for interfacial structure determination,machine-
learning interatomic potentials for large-scale simulation of realis-
tic nanocrystal models, and Bayesian calibration against operando
spectroscopy data would further resolve the mechanistic picture.
Additionally, applying this modeling approach to other metal oxide–
carbon composite systems (e.g., Fe2O3@rGO, Co3O4@rGO) could
generalize the findings to a broader class of conversion-type anode
materials.
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