A Spectral-Geometric
Characterization of
W4P Regularity on
Non-Smooth Domains

Computational Evidence from Kondratiev
Theory for the Poisson-Dirichlet Problem

Comprehensive study verifying the regularity threshold p < N/(N — Anin).




The Core Problem & The Proposed Criterion

The Conflict

Classical theory (Agmon-Douglis-Nirenberg)
guarantees optimal regularity u € W2?(Q)
for C1! boundaries.

However, this regularity fails on domains with

re-entrant corners (2D) or edges/vertices
(3D).

Key Question: What is the precise geometric
threshold where regularity breaks?

The Solution

The Criterion: Regularity holds if and only if:

p<N/(N—)\min)

The Variables:
N is the dimension, Anin IS the smallest
leading Kondratiev singular exponent.

The Evidence:

Supported by mesh convergence studies on
350 corner angles and 166 cone half-angles,
utilizing graded meshes (r3/2) and jump-
based seminorm estimation.



The Geometry of Singularity

Case A: Smooth / Convex Case B: Non-Smooth / Re-entrant
w>T
w>T
Boundary is C! or Convex. Re-entrant Corner / Vertex.
Result: Full W2 regularity for all p. Result: Regularity fails for large p.

The fundamental insight: Solutions develop singularities u ~ cr*¢(6). While u
remains continuous, second derivatives scale as r1~2, leading to unboundedness.



The Mechanics of Breakdown

\ The Singularity: Second derivatives behave like r4~2.

¥

Integrability Condition: The critical exponent p™ is
determined by LP-integrability in N dimensions.
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Algebraic Constraint: & (A—-2)p+ N> 0
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The Threshold: & p <



Conjecture 1: The Spectral-Geometric Criterion

Dimension (2 or 3) \
N Smallest positive root

*
p — ofthe indicial equation
-7\ . A (Kondratiev exponent)
min

2D Corners: A\; = m/w (where w is the interior angle)
3D Conical Vertices: A\; = v, (root of Legendre function P,(cos a) = 0)

Implication: If A, > NN, regularity holds for all p € (1, 00).



Computational Methodology

1 Catalog
Exponents

Analytical
calculation (2D)
and numerical
root-finding (3D)
for hundreds of
angles.

Minimal
FEM Solver
P1 elements on

triangulated
sector domains.
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3 Graded

4 Seminorm
Meshes

Estimation

Radial node
spacing

Using gradient
jump recovery

r = (i/n.)** to
resolve the r4
singularity:.

[[Vup]|g to
estimate the
W4P seminorm.




2D Corner Analysis (N=2)
For an interior angle w, the

singular exponentis A = m/w.
Substituting into the main A1 2 1= p” = oo (Safe)

formula:
Re-entrant (w > 180°)

o 2(-‘) A1 <1 = p* becomes finite.
p e Key Insight: As the angle w
2&) - opens up from 180° to 360°, the

window of allowable regularity
shrinks monotonically.



The 2D Critical Catalog

Geometry Angle Exponent (A) Critical Threshold (p*)
Flat 180° 1.00 00
Mild 210° 0.86 1.750
L-Shape 27’ 0.67 1.500
Severe 330° 0.55 1.375
Crack-like 360" 0.51 1.346

Note the sharp drop in p* as the geometry becomes more re-entrant.



Case Study: The L-Shaped Domain (w = 270°)

Prediction: Theory predicts breakdown
at p* = 1.50.

Mesh Convergence Ratios:

e p = 1.4: Ratio 1.47 (Bounded) [Safe]

 p = 1.5:Ratio 1.58 (Borderline)

« p = 1.6: Ratio 1.74 (Divergent) [Singular]
» p = 3.0: Ratio 12.7 (Massive Divergence)




Visualizing the Divergence
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Case Study: Severe Re-entrant Corner (w = 330°)

Context: A much sharper intrusion into the domain.
Prediction: p* = 1.375. The regularity window is ~27% narrower than the L-shape.

Exponent p Convergence Ratio . Status
1.30 1.56 ' Bounded
1.375 ' 1.67 ' Transition
2.00 . 4.71 - Strong Divergence

The ‘safe’ zone for numerical methods shrinks drastically as the re-entrant
angle approaches 360°.



Validating the Singularity

Do the numerics see the correct physics?

= Method: Extracted exponent \; 5 Singular Coefficient Magnitude:
from numerical solution via - The magnitude |c;| increases
u(r) ~ ri, ~ monotonically with angle severity.

S
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= Result: Tested across 32 angles
(195° to 350°).

= Accuracy: Mean relative error
A1 — 1]/ A1 < 5%.

Singular Coefficient

>

Angle Severity



The 3D Challenge: Conical Vertices

Geometric Difference The Math
m 2D Cross-section: An arc. v1 IS the root of the Legendre
Eigenvalue \ = 7/w. function: P,(cos ) = 0.

m 3D Cross-section: A spherical cap.
Eigenvalue \ = v;.

The 3D Threshold

; 3
p —

2-—1/1

Observation: 3D is strictly more restrictive than 2D for equivalent geometry.



3D Results & Thresholds

Eigenvalue oy
Half-Angle 9 Threshold
(Vl) *
(p”)
90°
(Half-space) 10 3.00
110° 0.71 2.33
135° 0.46 1.95
165° 0.24 1.70

Comparison:
In 2D at 270°, p* = 1.5.

In 3D, the dimension factor

N = 3 helps, but the
integrability condition is harder
to satisfy.

Key Finding: Regularity holds
for Tanaka framework (p > 1.5)
up to a =~ 165°.



The Regularity Phase Diagram
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Application: The Tanaka Framework

Context: Tanaka et al. (2026) proposed a Green’s function enclosure
method.

Requirement: The method requires pointwise control, needing p > N/2.
The Verification:
2D (N = 2): Requires p > 1. Our data shows p™ > 1 for all non-crack angles.

3D (N = 3): Requires p > 1.5. Our data shows p* > 1.5 for cones up to
a ~ 165°.

Conclusion: The framework is robust for almost all 2D domains but has
geometric limits in 3D.



Summary of Findings

1.

Precise Prediction: The spectral-geometric formula
accurately predicts the breakdown of regularity.

Sharp Transition: Mesh convergence studies confirm a
sharp boundary between bounded and divergent behavior
at exactly p™*.

Dimensionality Matters: 3D conical vertices are more
restrictive than 2D corners.

Reproducibility: All code and data are publicly available
for reproducibility.



Implications & Future Directions

Limitations: Study covers isolated singular features.
Accumulating irregularities (Lipschitz domains) remain open.

Extensions:
- Coupled edge-vertex analysis in 3D polyhedra.
- Borderline Besov regularity analysis at p = p*.

This study provides the ‘map’ for numerical analysts to
determine a priori if their high-order methods will
converge on non-smooth geometries.
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