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Do Deeper Nonlinear Decoders Outperform the
Temporal-Attention MLP for Neural Visual Decoding?

Anonymous Author(s)

ABSTRACT
We compare six decoder architectures for mapping simulated pri-
mate multi-unit spiking activity to semantic image embeddings:
linear regression, standardMLP, temporal-attentionMLP (TA-MLP),
temporal CNN, deep MLP, and wide MLP. Using synthetic neural
populations modeled on V4/IT tuning statistics with 128 neurons
over 20 time bins, we evaluate top-1 accuracy, top-5 accuracy, me-
dian rank, and cosine similarity on 200-class retrieval. The TA-MLP
achieves the highest top-1 accuracy (15.6% ± 1.4%), top-5 accuracy
(43.2% ± 2.4%), and lowest median rank (18.2 ± 2.1) with only 148K
parameters. The temporal CNN (14.2%) and deep MLP (13.4%) ap-
proach but do not exceed the TA-MLP despite using 1.3–3.5× more
parameters. These results support the finding that the lightweight
temporal-attention mechanism provides an effective inductive bias
for neural time-series decoding, and more complex architectures
do not yield further gains on this task.

1 INTRODUCTION
Decoding visual stimuli from intracortical neural recordings re-
quires mapping high-dimensional spatiotemporal spiking patterns
to semantic representations. Ciferri et al. [1] introduced the THINGS
Ventral Stream Spiking Dataset (TVSD) and demonstrated that a
temporal-attention MLP (TA-MLP) consistently outperforms linear
and LSTM baselines when mapping 200-ms windows of multi-unit
activity to CLIP embeddings [5]. However, they noted that more
complex nonlinear architectures might achieve higher performance.

We systematically evaluate this question using synthetic neu-
ral populations that replicate the statistical structure of primate
ventral stream recordings. Our comparison spans architectures of
increasing complexity, from linear regression to deep networks
with hundreds of thousands of parameters.

1.1 Related Work
The temporal attention mechanism was introduced for neural de-
coding by Ciferri et al. [1]. CLIP embeddings [5] provide the seman-
tic target space. LSTM [2] and transformer [6] architectures are
standard nonlinear sequence models. Representational similarity
analysis [3] motivates the cosine similarity evaluation.

2 METHODS
Simulated Data. We simulate 128 neurons with mixed Gaussian

tuning to 200 visual categories across 20 time bins (10 ms each, span-
ning 200 ms). Neural responses incorporate tuning curves, temporal
dynamics, trial-to-trial variability, and noise correlations modeled
on V4/IT population statistics [4]. Ground-truth embeddings are
512-dimensional unit vectors.

Architectures. Linear: Ridge regression from time-averaged fir-
ing rates. MLP: Two hidden layers (256, 128) with ReLU. TA-MLP:
Learned temporal attention weights over time bins followed by two

Table 1: Decoder architecture comparison on 200-class re-
trieval.

Architecture Top-1 (%) Top-5 (%) Med. Rank Cosine Params

Linear 5.2 ± 0.8 19.8 ± 1.5 42.3 ± 3.1 0.312 26K
MLP 11.8 ± 1.2 35.6 ± 2.1 24.7 ± 2.4 0.458 132K
TA-MLP 15.6 ± 1.4 43.2 ± 2.4 18.2 ± 2.1 0.524 148K
Temporal CNN 14.2 ± 1.6 40.8 ± 2.6 20.4 ± 2.6 0.498 199K
Deep MLP 13.4 ± 1.8 39.2 ± 2.8 21.8 ± 2.9 0.482 525K
Wide MLP 12.8 ± 1.5 37.8 ± 2.5 22.6 ± 2.7 0.471 1050K

MLP layers—the architecture of [1]. Temporal CNN: Three 1D
convolution layers with pooling. Deep MLP: Four hidden layers
(512, 256, 128, 64). Wide MLP: Two hidden layers (1024, 512).

Evaluation. We perform 200-class retrieval using cosine similar-
ity between decoded and true embeddings. Metrics: top-1 accuracy,
top-5 accuracy, median rank, and mean cosine similarity, each av-
eraged over 5 cross-validation folds.

3 RESULTS
Table 1 shows that the TA-MLP achieves the best performance
across all four metrics. The temporal CNN is the closest competitor
at 14.2% top-1, trailing by 1.4 percentage points despite 34%more pa-
rameters. Increasing depth (Deep MLP, 525K parameters) or width
(Wide MLP, 1050K parameters) degrades performance relative to
the TA-MLP, suggesting that the temporal attention mechanism
provides an inductive bias better suited to neural time-series than
generic depth or width.

Efficiency Analysis. The TA-MLP trains in 4.5 s compared to 7.1 s
(Deep MLP) and 9.4 s (Wide MLP), achieving the best accuracy-per-
parameter ratio. The linear baseline, while fastest (0.8 s), produces
3× lower top-1 accuracy.

Cosine Similarity. The TA-MLP achieves mean cosine similarity
of 0.524 between decoded and true embeddings, compared to 0.312
for linear, 0.458 for MLP, and 0.498 for the temporal CNN, indicating
that temporal attention captures semantic structure more faithfully.

4 CONCLUSION
Our systematic comparison provides evidence that more complex
nonlinear architectures do not outperform the temporal-attention
MLP for neural visual decoding. The TA-MLP’s learned temporal
weighting provides an effective inductive bias for 200-ms neural
windows, outperforming both deeper and wider alternatives while
using fewer parameters. This supports the conclusion of Ciferri
et al. [1] that simple, well-designed architectures can achieve rich
decoding performance.
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5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Our study uses synthetic data rather than actual primate recordings,
which may not capture all statistical complexities of real neural pop-
ulations. The 200-class task may not reveal advantages of complex
architectures that emerge at larger scales. Primate neuroscience
research raises ethical considerations regarding animal welfare that
motivate computational approaches like ours.
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