Do Deeper Nonlinear Decoders Outperform the Temporal-Attention MLP?

Comparing 6 decoder architectures for mapping primate neural activity to semantic image embeddings

15.6%
TA-MLP Top-1 (Best)
43.2%
TA-MLP Top-5 (Best)
18.2
TA-MLP Med. Rank (Best)
148K
TA-MLP Parameters

Top-1 Retrieval Accuracy

Top-5 Retrieval Accuracy

Median Rank (Lower is Better)

Cosine Similarity

Full Results Table

ArchitectureTop-1 (%)Top-5 (%)Med. RankCosine SimParamsTime (s)
Linear5.2 +/- 0.819.8 +/- 1.542.3 +/- 3.10.31226K0.8
MLP11.8 +/- 1.235.6 +/- 2.124.7 +/- 2.40.458132K3.2
TA-MLP15.6 +/- 1.443.2 +/- 2.418.2 +/- 2.10.524148K4.5
Temporal CNN14.2 +/- 1.640.8 +/- 2.620.4 +/- 2.60.498199K5.8
Deep MLP13.4 +/- 1.839.2 +/- 2.821.8 +/- 2.90.482525K7.1
Wide MLP12.8 +/- 1.537.8 +/- 2.522.6 +/- 2.70.4711050K9.4