

1 Toward a Closed-Form Expression for the Volume of Feasible 2 Wealth Distributions in Payment Channel Networks 3

4 Anonymous Author(s)
5
6

7 ABSTRACT

8 We investigate the problem of deriving a closed-form formula for
9 $|W_G|$, the number of feasible wealth distributions in a payment
10 channel network $G(V, E, \text{cap})$. Through systematic enumeration
11 across path, cycle, star, and complete topologies with varying ca-
12 pacities, we establish that $|W_G|$ is determined by the product of
13 per-edge contributions modulated by topological correction fac-
14 tors. We develop a log-linear model expressing $\log |W_G|$ in terms
15 of the capacity product, node count, Betti number, and average
16 degree, achieving $R^2 = 0.997$. For a path graph with $n = 4$ and
17 capacity 5, we find $|W_G| = 216$ with feasibility ratio $r(G) = 0.265$.
18 Cycle topologies consistently yield higher $r(G)$ than path or star
19 topologies at equal node counts. Our analysis reveals that network
20 topology strongly constrains the feasible wealth space, with the
21 first Betti number and vertex degree distribution as the primary
22 structural determinants.

24 1 INTRODUCTION

25 Payment channel networks (PCNs) enable off-chain transactions in
26 blockchain systems by allowing users to route payments through
27 pre-funded channels [4]. Pickhardt [3] introduced a mathematical
28 framework characterizing the set W_G of feasible wealth distri-
29 butions in a PCN $G(V, E, \text{cap})$, where each edge e has integer capacity
30 $\text{cap}(e)$ and liquidity is conserved along channels.

31 The volume $|W_G|$ quantifies how many distinct wealth allo-
32 cations can be realized off-chain, and the ratio $r(G) = |W_G|/|W(C, n)|$
33 measures the fraction of on-chain distributions achievable through
34 the network. Currently, $|W_G|$ is estimated via Monte Carlo sampling
35 because no closed-form formula exists. Deriving such a formula
36 would enable precise evaluation of how topology and capacities
37 restrict wealth distributions.

38 In this work, we develop computational tools to enumerate $|W_G|$
39 exactly for small networks and propose candidate closed-form ap-
40 proximations based on topological invariants of G .

42 2 MODEL AND METHODS

44 2.1 Payment Channel Networks

46 A PCN is a graph $G(V, E, \text{cap})$ where each edge $e = \{u, v\}$ has
47 capacity $\text{cap}(e)$. A liquidity function λ assigns to each endpoint
48 a non-negative integer such that $\lambda(e, u) + \lambda(e, v) = \text{cap}(e)$. The
49 wealth of node v is $\omega(v) = \sum_{e: v \in e} \lambda(e, v)$.

50 The set W_G is the image of the integer liquidity polytope under
51 the linear wealth map. The total on-chain distributions $|W(C, n)| =$
52 $\binom{C+n-1}{n-1}$ follows from stars-and-bars counting.

53 2.2 Exact Enumeration

55 For small networks, we enumerate all $\prod_e (\text{cap}(e) + 1)$ liquidity
56 assignments and collect distinct wealth vectors. This provides exact
57 $|W_G|$ values as ground truth.

58 **Table 1: Exact $|W_G|$ and $r(G)$ for $n = 4$, cap=4.**

Topology	$ E $	β	$ W_G $	$r(G)$
Path	3	0	125	0.275
Cycle	4	1	369	0.381
Star	3	0	125	0.275
Complete	6	3	1289	0.441

2.3 Candidate Formulas

We propose two approximations:

Formula V1: $|W_G| \approx \prod_{e \in E} (\text{cap}(e) + 1) \cdot \frac{n}{n+\beta}$, where β is the
77 first Betti number (cycle rank).

Log-linear model: $\log |W_G| = a_1 \sum_e \log(\text{cap}(e) + 1) + a_2 \log n + a_3 \beta + a_4 \bar{d} + a_5$, where \bar{d} is the average degree, fitted via least squares.

3 RESULTS

3.1 Capacity Dependence

For a path graph with $n = 4$ nodes, $|W_G|$ grows from 27 (cap=2) to
86 216 (cap=5), following polynomial scaling in capacity. The feasibility
87 ratio $r(G)$ ranges from 0.321 to 0.265, decreasing with capacity as
88 the on-chain space grows faster.

3.2 Topology Comparison

At fixed capacity 4 and $n = 4$: cycle graphs achieve $r(G) = 0.381$,
93 complete graphs $r(G) = 0.441$, and both path and star graphs
94 $r(G) = 0.275$. The cycle topology offers the best trade-off between
95 connectivity and feasibility among sparse graphs.

3.3 Formula Accuracy

96 The log-linear model with five features (log capacity product, log
97 n , β , average degree, intercept) achieves $R^2 = 0.997$ across 18 data
98 points spanning three topologies, two node counts, and three ca-
99 pacity values. The fitted coefficients are $a_1 = 0.911$, $a_2 = 0.989$,
100 $a_3 = 0.235$, $a_4 = -0.979$, $a_5 = 0.461$.

101 The near-unity coefficient on the log capacity product ($a_1 \approx 0.91$)
102 confirms that $|W_G|$ scales almost linearly with the liquidity polytope
103 volume. The negative coefficient on average degree ($a_4 \approx -0.98$)
104 reflects the overlap reduction at high-degree nodes.

3.4 Scaling Behavior

105 As network size increases, $r(G)$ decreases for all topologies. Path
106 and star graphs show identical scaling (both are trees), while cycles
107 maintain higher $r(G)$. Complete graphs initially have high $r(G)$
108 for small n but decay rapidly due to the quadratic growth in edge
109 count.

117 4 DISCUSSION

118 Our results suggest that a closed-form for $|W_G|$ involves the product
 119 of edge-wise contributions corrected by topological factors. The
 120 key structural determinants are:

- 121 (1) The capacity product $\prod_e (\text{cap}(e) + 1)$, representing the raw
 122 liquidity space.
- 123 (2) The first Betti number $\beta = |E| - |V| + 1$, capturing cyclic
 124 constraints.
- 125 (3) The degree sequence, governing the projection overlap.

126 The high R^2 of the log-linear model suggests the general form
 127 $|W_G| \sim C_0 \cdot \prod_e (\text{cap}(e) + 1)^{a_1} \cdot n^{a_2} \cdot f(\beta, \bar{d})$ captures the dominant
 128 behavior. A fully rigorous closed-form likely requires a polytope-
 129 theoretic argument using Barvinok-type decompositions [1] or
 130 Brion's theorem [2].

131 5 CONCLUSION

132 We have established a computational framework for investigating
 133 $|W_G|$ in payment channel networks and proposed a log-linear
 134 approximation achieving $R^2 = 0.997$. Our analysis identifies the
 135 capacity product, Betti number, and degree distribution as the primary
 136 determinants of feasible wealth volume. These results provide
 137 a quantitative foundation toward deriving a rigorous closed-form
 138 expression and inform the design of PCN topologies that maximize
 139 wealth feasibility.

140 REFERENCES

- 141 [1] Alexander I Barvinok. 1994. A polynomial time algorithm for counting integral
 142 points in polyhedra when the dimension is fixed. *Mathematics of Operations
 143 Research* 19, 4 (1994), 769–779.
- 144 [2] Michel Brion. 1988. Points entiers dans les polyèdres convexes. *Annales scientifiques de l'École normale supérieure* 21, 4 (1988), 653–663.
- 145 [3] René Pickhardt. 2026. A Mathematical Theory of Payment Channel Networks.
 146 *arXiv preprint arXiv:2601.04835* (2026).
- 147 [4] Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Network: Scalable
 148 Off-Chain Instant Payments. *Technical Report* (2016).