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ABSTRACT

We investigate the problem of deriving a closed-form formula for
|[Wg|, the number of feasible wealth distributions in a payment
channel network G(V, E, cap). Through systematic enumeration
across path, cycle, star, and complete topologies with varying ca-
pacities, we establish that |Wg| is determined by the product of
per-edge contributions modulated by topological correction fac-
tors. We develop a log-linear model expressing log |Ws| in terms
of the capacity product, node count, Betti number, and average
degree, achieving R? = 0.997. For a path graph with n = 4 and
capacity 5, we find |Wg| = 216 with feasibility ratio r(G) = 0.265.
Cycle topologies consistently yield higher r(G) than path or star
topologies at equal node counts. Our analysis reveals that network
topology strongly constrains the feasible wealth space, with the
first Betti number and vertex degree distribution as the primary
structural determinants.

1 INTRODUCTION

Payment channel networks (PCNs) enable off-chain transactions in
blockchain systems by allowing users to route payments through
pre-funded channels [4]. Pickhardt [3] introduced a mathematical
framework characterizing the set W of feasible wealth distribu-
tions in a PCN G(V, E, cap), where each edge e has integer capacity
cap(e) and liquidity is conserved along channels.

The volume |Wg| quantifies how many distinct wealth alloca-
tions can be realized off-chain, and the ratio r(G) = [Wg|/|W (C, n)|
measures the fraction of on-chain distributions achievable through
the network. Currently, |Wg| is estimated via Monte Carlo sampling
because no closed-form formula exists. Deriving such a formula
would enable precise evaluation of how topology and capacities
restrict wealth distributions.

In this work, we develop computational tools to enumerate |Wg|
exactly for small networks and propose candidate closed-form ap-
proximations based on topological invariants of G.

2 MODEL AND METHODS

2.1 Payment Channel Networks

A PCN is a graph G(V,E,cap) where each edge e = {u,v} has
capacity cap(e). A liquidity function A assigns to each endpoint
a non-negative integer such that A(e,u) + A(e,v) = cap(e). The
wealth of node v is W(v) = Y ¢.pee Ale, V).

The set W is the image of the integer liquidity polytope under

the linear wealth map. The total on-chain distributions |"W(C, n)| =
(C+n— 1

+17") follows from stars-and-bars counting.

2.2 Exact Enumeration

For small networks, we enumerate all [].(cap(e) + 1) liquidity
assignments and collect distinct wealth vectors. This provides exact
|Wg| values as ground truth.

Table 1: Exact [W;| and r(G) for n = 4, cap=4.

Topology |E| f [Wg| r(G)
Path 30 125 0.275
Cycle 4 1 369 0.381
Star 3 0 125 0.275
Complete 6 3 1289 0.441

2.3 Candidate Formulas
We propose two approximations:

Formula V1: [Wg| = [[.cg(cap(e) + 1) -
first Betti number (cycle rank).

Log-linear model: log |Ws| = a1 X, log(cap(e) +1) +az logn+
a3 f+aqd+as, where d is the average degree, fitted via least squares.

Fnﬁ’ where f is the

3 RESULTS

3.1 Capacity Dependence

For a path graph with n = 4 nodes, |Wg| grows from 27 (cap=2) to
216 (cap=>5), following polynomial scaling in capacity. The feasibility
ratio r(G) ranges from 0.321 to 0.265, decreasing with capacity as
the on-chain space grows faster.

3.2 Topology Comparison

At fixed capacity 4 and n = 4: cycle graphs achieve r(G) = 0.381,
complete graphs r(G) = 0.441, and both path and star graphs
r(G) = 0.275. The cycle topology offers the best trade-off between
connectivity and feasibility among sparse graphs.

3.3 Formula Accuracy

The log-linear model with five features (log capacity product, log
n, B, average degree, intercept) achieves R? = 0.997 across 18 data
points spanning three topologies, two node counts, and three ca-
pacity values. The fitted coefficients are a; = 0.911, az = 0.989,
as = 0.235, ag = —0.979, as = 0.461.

The near-unity coefficient on the log capacity product (a; = 0.91)
confirms that |Ws| scales almost linearly with the liquidity polytope
volume. The negative coefficient on average degree (a4 ~ —0.98)
reflects the overlap reduction at high-degree nodes.

3.4 Scaling Behavior

As network size increases, r(G) decreases for all topologies. Path
and star graphs show identical scaling (both are trees), while cycles
maintain higher r(G). Complete graphs initially have high r(G)
for small n but decay rapidly due to the quadratic growth in edge
count.
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4 DISCUSSION

Our results suggest that a closed-form for |W| involves the product
of edge-wise contributions corrected by topological factors. The
key structural determinants are:
(1) The capacity product [, (cap(e) + 1), representing the raw
liquidity space.
(2) The first Betti number f = |E| — |V| + 1, capturing cyclic
constraints.
(3) The degree sequence, governing the projection overlap.

The high R? of the log-linear model suggests the general form
[Wg| ~ Co - [1e(cap(e) + 1)@ - n% - f(B,d) captures the dominant
behavior. A fully rigorous closed-form likely requires a polytope-
theoretic argument using Barvinok-type decompositions [1] or
Brion’s theorem [2].

Anon.

5 CONCLUSION

We have established a computational framework for investigat-
ing |Wg| in payment channel networks and proposed a log-linear
approximation achieving R? = 0.997. Our analysis identifies the
capacity product, Betti number, and degree distribution as the pri-
mary determinants of feasible wealth volume. These results provide
a quantitative foundation toward deriving a rigorous closed-form
expression and inform the design of PCN topologies that maximize
wealth feasibility.
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