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ABSTRACT
We investigate the problem of finding payment channel network
topologies that maximize 𝑟 (𝐺) = |𝑊𝐺 |/|W(𝐶,𝑛) |, the ratio of fea-
sible off-chain wealth distributions to total on-chain distributions.
Through exhaustive enumeration over all connected graphs for
𝑛 ≤ 5 and evolutionary search for 𝑛 = 6, we find that the complete
graph (𝐾𝑛) maximizes 𝑟 (𝐺) for 𝑛 ≤ 4 with 𝑟 (𝐾4) = 0.441, while
for 𝑛 ≥ 5, sparser topologies with moderate connectivity dominate.
Across all tested configurations, cycle graphs consistently achieve
the highest 𝑟 (𝐺) among standard graph families for 𝑛 ≥ 5, with
𝑟 (𝐶6) = 0.100 compared to 𝑟 (𝐾6) = 0.001. The optimal edge count
for 𝑛 = 4 is consistently 6 (complete graph) regardless of capac-
ity, while the optimal degree sequence transitions from regular to
near-regular as 𝑛 grows. These findings provide practical guidance
for designing payment channel networks that maximize off-chain
payment feasibility.

1 INTRODUCTION
Payment channel networks (PCNs) such as the Lightning Net-
work [3] enable scalable off-chain transactions. Pickhardt [2] de-
fined 𝑟 (𝐺) as the ratio of feasible wealth distributions to all possible
distributions, measuring how well a network topology supports
off-chain payments. Finding the topology maximizing 𝑟 (𝐺) remains
open.

This work presents the first systematic computational study of
𝑟 (𝐺) optimization, combining exhaustive enumeration, evolution-
ary search [1], and analytical bounds.

2 METHODS
2.1 Exhaustive Enumeration
For 𝑛 ≤ 5 nodes, we enumerate all connected graphs on 𝑛 ver-
tices, computing 𝑟 (𝐺) for each via exact enumeration of liquidity
assignments. For 𝑛 = 4, this yields 38 distinct connected topologies.

2.2 Evolutionary Search
For 𝑛 = 6, we employ an evolutionary algorithm with tournament
selection, edge-flip mutation (rate 0.15), and elitism. The population
of 10 connected graphs evolves over 15 generations, using 𝑟 (𝐺) as
fitness.

3 RESULTS
3.1 Optimal Topologies
For 𝑛 = 3: The cycle 𝐶3 (= 𝐾3) is optimal with 𝑟 (𝐺) = 0.673.

For 𝑛 = 4: The complete graph 𝐾4 achieves 𝑟 (𝐺) = 0.441, the
highest among all 38 connected graphs. The optimal degree se-
quence is [3, 3, 3, 3].

For 𝑛 = 5: A graph with degree sequence [3, 3, 2, 2, 2] achieves
𝑟 (𝐺) = 0.228, outperforming both 𝐾5 (𝑟 = 0.044) and𝐶5 (𝑟 = 0.202).

Table 1: Best 𝑟 (𝐺) by graph family and node count (cap=3).

Family 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6

Path 0.571 0.291 0.141 0.066
Cycle 0.673 0.385 0.202 0.100
Star 0.571 0.291 0.141 0.066
Complete 0.673 0.441 0.044 0.001

Best found 0.673 0.441 0.228 0.100

3.2 Edge Count Analysis
The optimal number of edges for 𝑛 = 4 is consistently 6 (the com-
plete graph) across capacities 2–5, with 𝑟 (𝐺) stable at approximately
0.441. This stability suggests the optimal topology is robust to ca-
pacity variations.

3.3 Scaling Behavior
All graph families show decreasing 𝑟 (𝐺) with 𝑛, but the rate of
decrease varies dramatically. Complete graphs decay fastest (from
0.673 to 0.001 for 𝑛 = 3 to 6), while cycles decay most slowly (0.673
to 0.100). This crossover between 𝑛 = 4 and 𝑛 = 5 marks a critical
transition in the optimal topology structure.

4 DISCUSSION
The key finding is a phase transition in optimal topology: for small
networks (𝑛 ≤ 4), maximum connectivity is optimal, while for
larger networks (𝑛 ≥ 5), moderate connectivity preserves a higher
fraction of feasible distributions. This transition occurs because the
denominator |W(𝐶,𝑛) | grows faster with total capacity𝐶 = |𝐸 | ·cap
than |𝑊𝐺 | grows with additional edges.

For practical network design, cycle-like topologies with degree
close to 2 offer the best feasibility-to-capacity trade-off at scale,
consistent with the routing structure used in real payment channel
networks [4, 5].

5 CONCLUSION
We identified a phase transition in the topology maximizing 𝑟 (𝐺):
from complete graphs for 𝑛 ≤ 4 to sparser, cycle-like topologies
for 𝑛 ≥ 5. Cycle graphs achieve the highest 𝑟 (𝐺) among standard
families for larger networks. These results provide the first com-
putational characterization of optimal PCN topologies for wealth
feasibility.
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