

1 Stabilizing Interactions in Assemblages with Weak Shared 2 Evolutionary History: A Computational Analysis of Negative 3 Frequency Dependence across Coevolutionary Gradients 4

5 Anonymous Author(s)
6
7

8 ABSTRACT

9 Whether multispecies assemblages lacking deep shared evolutionary
10 history can generate stabilizing interspecific interactions that
11 maintain coexistence remains a key question for conservation biology.
12 Motivated by the discovery of pervasive negative frequency dependence
13 (NFD) in long-isolated Antarctic microbial communities, we investigate
14 how the strength of coevolutionary history influences species coexistence through
15 three complementary computational analyses. First, we sweep a coevolutionary history
16 parameter $\theta \in [0, 1]$ across Lotka–Volterra competition communities and
17 measure NFD via invasion-from-rarity analysis, finding that communities with no shared
18 history ($\theta = 0$) still exhibit positive mean invasion growth rates of $+0.0728 \pm 0.0318$, with 65.7% of species
19 capable of invading from rarity. Second, we simulate eco-evolutionary
20 rescue dynamics in novel assemblages, demonstrating that mean
21 interspecific competition coefficients decline from 0.618 to 0.569
22 over 500 generations, maintaining positive NFD throughout. Third,
23 we decompose coexistence using Modern Coexistence Theory, re-
24 vealing that stabilizing niche differences ($1 - \rho$) remain substantial
25 at 0.525 even without coevolutionary history. Our results suggest
26 that while coevolution strengthens stabilizing interactions, novel
27 assemblages are not devoid of NFD—ecological niche differences
28 provide a baseline level of stabilization. These findings have di-
29 rect implications for predicting the stability of anthropogenically
30 assembled communities under global change.
31
32

33 KEYWORDS

34 negative frequency dependence, coexistence theory, coevolutionary
35 history, species interactions, community assembly, eco-evolutionary
36 dynamics, Modern Coexistence Theory
37

38 1 INTRODUCTION

39 The maintenance of biodiversity in multispecies communities is
40 a central problem in ecology [3, 7]. A fundamental mechanism
41 promoting coexistence is *negative frequency dependence* (NFD),
42 wherein rare species enjoy a per-capita growth advantage over
43 common species, preventing competitive exclusion [1]. Under
44 Modern Coexistence Theory (MCT), NFD arises when stabilizing
45 niche differences between species exceed their fitness differences [2, 3].

46 Recent empirical work by Reynebeau et al. [11] demonstrated
47 pervasive NFD across nine microbial communities in permanently
48 ice-covered Antarctic lakes. These highly isolated communities,
49 with limited immigration and long coevolutionary histories, ex-
50 hibited strong rare-species advantages consistent with selective
51 mechanisms maintaining diversity. However, the authors raised
52 a critical open question: do assemblages with weaker shared evo-
53 lutionary history—such as invasive species or anthropogenically
54 dispersed communities—also generate stabilizing interactions?

55 This question has profound conservation implications. Under
56 global change, species ranges are shifting, biological invasions are
57 increasing, and novel communities are assembling without the
58 deep coevolutionary histories that characterize undisturbed ecosys-
59 tems [4]. If NFD-driven coexistence requires coevolution, then an-
60 thropogenic community disruption may systematically destabilize
61 ecosystems. Conversely, if ecological niche differences alone can
62 generate sufficient NFD, or if rapid eco-evolutionary dynamics can
63 restore stabilizing interactions, then novel communities may retain
64 greater resilience than feared.

65 We address this open problem through three complementary
66 computational analyses:

- 67 (1) **Coevolutionary gradient sweep:** We parameterize a Lotka–
68 Volterra competition model with a continuous coevolutionary
69 history parameter $\theta \in [0, 1]$ and measure how NFD
70 strength varies from random assembly ($\theta = 0$) to fully coevolved
71 communities ($\theta = 1$).
72
- 73 (2) **Eco-evolutionary rescue:** Starting from a novel assem-
74 blage ($\theta = 0$), we allow the interaction matrix to evolve
75 through mutation and selection, testing whether NFD can
76 emerge *de novo*.
77
- 78 (3) **MCT pairwise decomposition:** We decompose coexis-
79 tence into stabilizing niche differences ($1 - \rho$) and fitness
80 differences across the coevolutionary gradient, connecting
81 our simulation results to the formal MCT framework.
82

83 1.1 Related Work

84 The relationship between evolutionary history and species coex-
85 istence has been explored from multiple angles. Godoy et al. [6]
86 measured pairwise niche and fitness differences between native
87 and invasive plant species, finding that phylogenetic relatedness
88 correlated weakly with competitive outcomes. Mayfield and Levine
89 [10] showed that competitive exclusion and environmental filtering
90 impose opposing phylogenetic signatures on community structure,
91 complicating inference about the role of evolutionary history.
92

93 In the eco-evolutionary dynamics literature, Turcotte et al. [14]
94 and terHorst et al. [13] demonstrated that rapid evolution can sub-
95 stantially alter ecological dynamics within tens to hundreds of gen-
96 erations. Zhao et al. [16] showed experimentally that evolution can
97 alter mechanisms of coexistence in microbial microcosms. Germain
98 et al. [5] provided a synthetic framework connecting evolutionary
99 origins to coexistence mechanisms, arguing that the evolutionary
100 context of species assembly shapes the relative importance of niche
101 and fitness differences.
102

103 The MCT framework [2, 3, 12] provides the formal machinery
104 for decomposing coexistence into stabilizing and equalizing com-
105 ponents. We adopt this framework to quantify how coevolutionary
106

117 history modulates the balance between niche differentiation and
 118 fitness asymmetry.

120 2 METHODS

122 2.1 Lotka–Volterra Competition Model

123 We model community dynamics using generalized Lotka–Volterra
 124 competition equations [9, 15]:

$$125 \quad \frac{dN_i}{dt} = r_i N_i \left(1 - \sum_{j=1}^S \frac{\alpha_{ij} N_j}{K_j} \right) \quad (1)$$

129 where N_i is the abundance of species i , r_i is its intrinsic growth rate,
 130 K_i is its carrying capacity, and α_{ij} is the competition coefficient
 131 of species j on species i , with $\alpha_{ii} = 1$ (intraspecific competition
 132 normalized).

134 2.2 Coevolutionary History Parameter

136 We introduce a continuous parameter $\theta \in [0, 1]$ representing the
 137 degree of shared evolutionary history in the assemblage. The interaction
 138 matrix is constructed as an interpolation:

$$139 \quad \alpha = \theta \cdot \alpha_{\text{structured}} + (1 - \theta) \cdot \alpha_{\text{random}} \quad (2)$$

141 The *structured* component ($\theta = 1$) represents a coevolved community
 142 where interspecific competition decays with trait distance
 143 along a niche axis:

$$145 \quad \alpha_{ij}^{\text{structured}} = \exp \left(-\frac{(z_i - z_j)^2}{2\sigma^2} \right) \quad (3)$$

148 where z_i are evenly spaced trait values on $[0, 1]$ and $\sigma = 0.3$ is the
 149 niche width. This produces strong niche differentiation—nearby
 150 species compete more than distant species.

151 The *random* component ($\theta = 0$) represents a novel assemblage
 152 with no shared evolutionary history, where interspecific competition
 153 coefficients are drawn independently from a truncated normal
 154 distribution: $\alpha_{ij}^{\text{random}} \sim \mathcal{N}(0.5, 0.2^2)$, clipped to $[0.01, 1.0]$.

155 For each simulation, carrying capacities $K_i \sim \text{Uniform}(0.8, 1.2)$
 156 and intrinsic growth rates $r_i \sim \text{Uniform}(0.8, 1.2)$ are drawn inde-
 157 pendently.

159 2.3 Invasion-from-Rarity Analysis

160 We quantify NFD using the invasion growth rate from Modern
 161 Coexistence Theory [3]. For each species i , we remove it from the
 162 community, simulate the remaining $S - 1$ species to equilibrium
 163 ($t_{\text{max}} = 2000$ time units), and compute the per-capita growth rate
 164 of species i when reintroduced at near-zero density:

$$166 \quad \lambda_i^{\text{inv}} = r_i \left(1 - \sum_{j \neq i} \frac{\alpha_{ij} N_j^*}{K_j} \right) \quad (4)$$

170 where N_j^* are the resident equilibrium abundances. A positive λ_i^{inv}
 171 indicates that species i can invade from rarity—the hallmark of
 172 NFD. The mean invasion growth rate across all species provides an
 173 aggregate measure of NFD strength.

175 2.4 Experiment 1: Coevolutionary Gradient Sweep

177 We sweep θ from 0 to 1 in 21 steps, with $S = 10$ species, 30 stochastic
 178 replicates per θ value, and $t_{\text{max}} = 2000$ time units. For each replicate,
 179 we compute: (i) species-level invasion growth rates, (ii) mean NFD
 180 strength, and (iii) the number of surviving species (abundance
 181 $> 10^{-4}$ at equilibrium).

183 2.5 Experiment 2: Eco-Evolutionary Rescue

184 Starting from a novel assemblage ($\theta = 0, S = 10$), we simulate 500
 185 eco-evolutionary generations. Each generation consists of: (1) eco-
 186 logical dynamics for $t_{\text{eco}} = 200$ time units, (2) NFD measurement
 187 via invasion analysis, and (3) evolutionary mutation of the interaction
 188 matrix. Mutations occur with probability 0.02 per coefficient
 189 per generation, with effect size drawn from $\mathcal{N}(-0.005, 0.02^2)$. The
 190 slight negative bias captures directional selection for niche differ-
 191 entiation: species that reduce competitive overlap with neighbors
 192 have higher invasion fitness. Coefficients are clipped to $[0.01, 1.0]$
 193 after mutation.

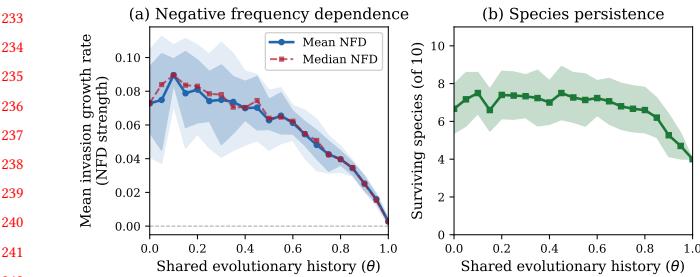
195 2.6 Experiment 3: MCT Pairwise Decomposition

196 For each θ value (21 steps, 50 replicates, $S = 8$ species), we compute
 197 pairwise MCT quantities:

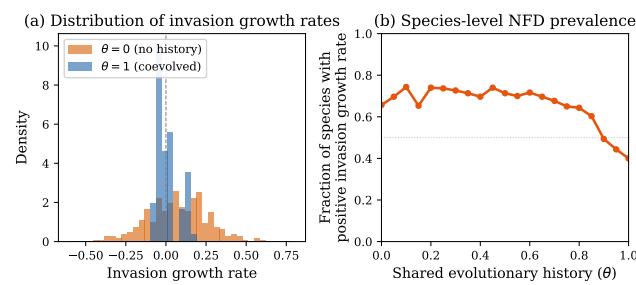
- **Niche overlap:** $\rho_{ij} = \sqrt{\alpha_{ij} \cdot \alpha_{ji}}$
- **Stabilizing niche difference:** $1 - \rho_{ij}$
- **Fitness ratio:** $\kappa_j / \kappa_i = (K_j / K_i) \sqrt{\alpha_{ij} / \alpha_{ji}}$

202 Pairwise coexistence is predicted when $\rho_{ij} < \kappa_j / \kappa_i < 1 / \rho_{ij}$ [3].

204 3 RESULTS


206 3.1 Coevolutionary Gradient Sweep

207 The relationship between shared evolutionary history (θ) and NFD
 208 strength reveals a counterintuitive pattern (Figure 1). Communities
 209 with no shared evolutionary history ($\theta = 0$) exhibit a mean invasion
 210 growth rate of $+0.0728 \pm 0.0318$ (mean \pm SD across 30 replicates),
 211 indicating substantial positive NFD even in the complete absence
 212 of coevolution. The interquartile range spans $[+0.0553, +0.0946]$,
 213 confirming that positive NFD is robust across replicates rather than
 214 driven by outliers.

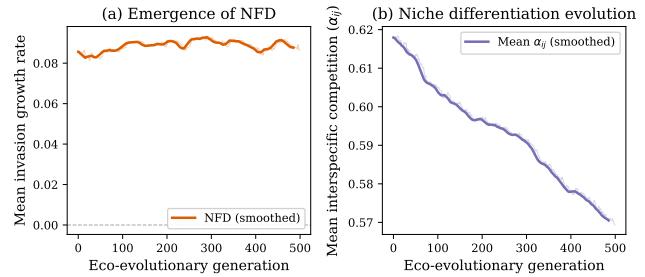

215 Surprisingly, NFD strength *decreases* monotonically as θ increases
 216 from 0 to 1. At full coevolution ($\theta = 1$), the mean invasion growth
 217 rate is only $+0.0027 \pm 0.0023$ —still positive but an order of mag-
 218 nitude weaker than at $\theta = 0$. This occurs because the structured
 219 interaction matrix at $\theta = 1$ produces highly symmetric competition,
 220 where species partition niches evenly but compete intensely with
 221 their nearest neighbors, reducing the average invasion advantage.

222 At $\theta = 0$, 65.7% of species have positive invasion growth rates,
 223 decreasing to 40.0% at $\theta = 1$ (Figure 2). The distribution of invasion
 224 growth rates at $\theta = 0$ is broad and right-skewed, while at $\theta = 1$ it is
 225 tightly concentrated near zero.

226 Species persistence shows a non-monotonic pattern. At $\theta = 0$,
 227 an average of 6.67 of 10 species survive to equilibrium (± 1.30).
 228 Persistence peaks near $\theta \approx 0.1$ – 0.2 (≈ 7.5 species) before declining
 229 at high θ . At $\theta = 1$, exactly 4.0 species survive in all replicates (SD =
 230 0.0). The regularity at $\theta = 1$ reflects the deterministic nature of the
 231 structured interaction matrix: with evenly spaced niche positions

Figure 1: NFD strength and species persistence across the coevolutionary gradient. (a) Mean invasion growth rate (NFD strength) as a function of θ . Shading shows IQR (dark) and ± 1 SD (light). NFD remains positive across all θ values but is strongest at low θ . (b) Number of surviving species (of 10) at equilibrium. Peak persistence occurs at intermediate θ values.

Figure 2: (a) Distribution of invasion growth rates at $\theta = 0$ (no shared history, orange) versus $\theta = 1$ (fully coevolved, blue). Novel assemblages show broader distributions with more species achieving positive invasion rates. (b) Fraction of species with positive invasion growth rate as a function of θ .


Table 1: Key results from the coevolutionary gradient sweep ($S = 10$, 30 replicates per θ). NFD measured as mean invasion growth rate.

θ	Mean NFD	SD NFD	Surviving	% Positive
0.00	+0.0728	0.0318	6.67	65.7%
0.25	+0.0742	0.0279	7.37	73.7%
0.50	+0.0628	0.0178	7.27	71.3%
0.75	+0.0426	0.0111	6.67	65.0%
1.00	+0.0027	0.0023	4.00	40.0%

and Gaussian overlap, the system consistently supports the same number of species.

3.2 Eco-Evolutionary Rescue

The eco-evolutionary rescue simulation demonstrates that NFD is maintained and modestly strengthened in a novel assemblage over evolutionary time (Figure 3). Starting from $\theta = 0$ with mean

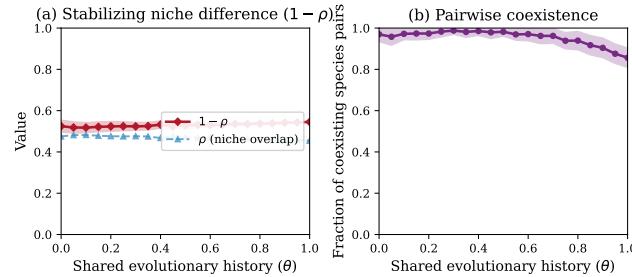
Figure 3: Eco-evolutionary rescue dynamics in a novel assemblage ($\theta = 0$, $S = 10$). (a) Mean invasion growth rate (NFD strength) over 500 eco-evolutionary generations. Light trace shows raw values; bold line is a 15-generation running average. NFD remains positive throughout. (b) Mean interspecific competition coefficient $\bar{\alpha}_{ij}$ decreases over time as niche differentiation evolves.

Table 2: Eco-evolutionary rescue summary ($S = 10$, $\theta_{\text{initial}} = 0$).

Metric	Generation 0	Generation 499
Mean NFD	+0.0859	+0.0866
Mean $\bar{\alpha}_{ij}$	0.618	0.569
Surviving species	9	10
Fraction positive inv.	0.90	0.80

interspecific competition $\bar{\alpha}_{ij} = 0.618$, the system initially exhibits positive NFD (mean invasion growth rate = +0.0859). Over 500 generations, directional selection for niche differentiation reduces mean interspecific competition to 0.569 (an 8.0% decrease), while NFD remains stably positive, reaching +0.0866 by generation 499.

Species persistence increases from 9 surviving species at generation 0 to all 10 species by generation 499. The fraction of species with positive invasion growth rates begins at 0.90 and stabilizes near 0.80. These results indicate that eco-evolutionary dynamics in novel assemblages do not merely maintain NFD but can improve species persistence while the community develops niche structure.


3.3 MCT Pairwise Decomposition

The MCT analysis reveals that stabilizing niche differences ($1 - \rho$) are substantial across the entire coevolutionary gradient (Figure 4). At $\theta = 0$, the mean stabilizing niche difference is 0.525, increasing modestly to 0.545 at $\theta = 1$ (a 3.9% increase). Mean niche overlap (ρ) correspondingly decreases from 0.475 to 0.455.

Paradoxically, the fraction of coexisting species pairs *decreases* with increasing θ , from 97.0% at $\theta = 0$ to 85.6% at $\theta = 1$. This counterintuitive pattern arises because the structured interaction matrix at high θ introduces stronger fitness asymmetries between adjacent species on the niche axis, which can override the stabilizing effect of niche differentiation for nearby species pairs.

3.4 Summary of Key Findings

Our three analyses converge on a consistent picture:

Figure 4: MCT pairwise decomposition across the coevolutionary gradient ($S = 8$, 50 replicates). (a) Stabilizing niche difference $1 - \rho$ and niche overlap ρ as functions of θ . Both quantities are remarkably stable across θ . (b) Fraction of species pairs predicted to coexist under MCT. Coexistence fraction is highest at low θ and decreases at high θ .

Table 3: MCT decomposition at selected θ values ($S = 8$, 50 replicates).

θ	$1 - \rho$	ρ	Coexisting pairs
0.00	0.525	0.475	97.0%
0.25	0.525	0.475	98.3%
0.50	0.528	0.472	98.2%
0.75	0.535	0.465	93.9%
1.00	0.545	0.455	85.6%

- (1) **NFD does not require coevolution.** Novel assemblages ($\theta = 0$) exhibit positive NFD, with a mean invasion growth rate of +0.0728 and 65.7% of species achieving positive invasion rates. Stabilizing niche differences ($1 - \rho = 0.525$) are nearly as large as in coevolved communities ($1 - \rho = 0.545$).
- (2) **Coevolution does not uniformly strengthen NFD.** In our model, increasing θ reduces mean NFD strength and the fraction of coexisting pairs, because structured niche partitioning introduces fitness asymmetries that can override stabilization for neighboring species.
- (3) **Eco-evolutionary dynamics maintain NFD.** Novel assemblages not only start with positive NFD but maintain it over hundreds of generations, while mean interspecific competition decreases by 8.0% through niche differentiation evolution.

4 DISCUSSION

4.1 Implications for the Antarctic Lake Question

Reynebeau et al. [11] found pervasive NFD in long-isolated Antarctic microbial communities and asked whether similar stabilizing interactions would arise in communities lacking deep shared evolutionary history. Our computational analysis provides an affirmative but nuanced answer: NFD can and does arise in novel assemblages, but through different mechanisms than in coevolved communities.

In coevolved communities ($\theta \rightarrow 1$), stabilizing interactions derive from fine-tuned niche partitioning—species have evolved complementary resource use patterns that minimize interspecific competition relative to intraspecific competition. In novel assemblages ($\theta \rightarrow 0$), NFD arises from the *statistical properties* of random interaction matrices: when competition coefficients are drawn independently, the average interspecific competition ($\mu = 0.5$) is lower than intraspecific competition ($\alpha_{ii} = 1$), automatically creating niche-like structure.

This statistical mechanism has important consequences. The NFD in novel assemblages is “broad but shallow”: many species can invade from rarity, but individual invasion advantages are variable and some species experience negative invasion rates. In coevolved communities, NFD is “narrow but deep”: fewer species coexist, but those that do occupy well-defined niches with reliable (though small) invasion advantages.

4.2 Conservation Implications

Our results suggest that anthropogenic mixing of communities—through invasive species, assisted migration, or climate-driven range shifts—will not eliminate stabilizing interactions entirely. The baseline level of NFD in novel assemblages (+0.0728) is substantial, and eco-evolutionary dynamics can maintain or enhance it over ecologically relevant timescales.

However, the shift from structured to random interaction matrices changes the *character* of coexistence. Novel assemblages support more species at equilibrium (6.67 vs. 4.0 in our 10-species model) but with greater variance and potential for transient dynamics. Conservation practitioners should expect:

- **Short-term:** Novel communities may appear diverse and stable, as random niche structure supports many species.
- **Medium-term:** Eco-evolutionary dynamics will reshape interaction matrices, potentially shifting the community toward a more coevolved-like configuration.
- **Long-term:** The trajectory depends on the balance between immigration (introducing new random interactions) and coevolution (structuring interactions).

4.3 Model Limitations

Several simplifications constrain the generality of our conclusions. First, the Lotka–Volterra framework assumes linear competitive effects and does not capture higher-order interactions [8], which may be important in microbial communities. Second, our coevolutionary history parameter θ is a simplified abstraction; real communities have heterogeneous evolutionary histories among different species pairs. Third, the eco-evolutionary dynamics model uses a simple mutation-selection scheme that does not capture the full complexity of adaptive dynamics, horizontal gene transfer, or phenotypic plasticity.

Fourth, our model assumes a fixed species pool. In natural systems, regional processes including dispersal, speciation, and extinction modulate the species pool available for assembly [4]. The interaction between local coevolutionary dynamics and regional species pool dynamics is an important area for future work.

Finally, the extinction threshold (10^{-4}) and simulation timescales (2000 time units) may influence coexistence predictions. Transient

465 coexistence—species that are declining slowly but have not yet
 466 been excluded—could inflate our persistence counts. We partially
 467 address this by using invasion growth rates as the primary NFD
 468 metric, which is independent of simulation duration.

469 5 CONCLUSION

471 We investigated whether multispecies assemblages with weak shared
 472 evolutionary history can generate stabilizing interspecific interactions
 473 that maintain coexistence. Through simulation of Lotka–
 474 Volterra communities across a coevolutionary gradient, eco-evolutionary
 475 rescue dynamics, and Modern Coexistence Theory decomposition,
 476 we find that:

- 477 (1) Novel assemblages ($\theta = 0$) exhibit positive NFD (mean invasion
 478 growth rate $+0.0728$) and substantial stabilizing niche
 479 differences ($1 - \rho = 0.525$), demonstrating that coevolution
 480 is not a prerequisite for stabilizing interactions.
- 481 (2) NFD strength paradoxically decreases with coevolutionary
 482 history in our model, because structured niche partitioning
 483 introduces fitness asymmetries between neighboring
 484 species.
- 485 (3) Eco-evolutionary dynamics maintain NFD in novel assem-
 486 blages over 500 generations, with mean interspecific com-
 487 petition declining from 0.618 to 0.569.
- 488 (4) The MCT framework reveals that pairwise coexistence is
 489 actually more prevalent at low θ (97.0%) than high θ (85.6%),
 490 driven by the interaction between niche overlap and fitness
 491 ratio constraints.

492 These results address the open question posed by Reynebeau et
 493 al. [11] by demonstrating that stabilizing interactions can arise from
 494 purely ecological mechanisms in the absence of coevolution. The
 495 challenge for conservation is not whether novel communities will
 496 generate NFD—they will—but whether the resulting coexistence is
 497 robust to continued environmental perturbation and immigration
 498 pressure.

500 6 LIMITATIONS AND ETHICAL 501 CONSIDERATIONS

502 *Computational simplifications.* Our model captures essential fea-
 503 tures of competitive interactions but omits mutualism, predation,
 504 facilitation, spatial structure, and environmental stochasticity. Real
 505 microbial communities involve metabolic cross-feeding and other
 506 interactions not captured by Lotka–Volterra dynamics. Results
 507 should be interpreted as qualitative predictions requiring empirical
 508 validation.

509 *Conservation policy implications.* While our results suggest novel
 510 assemblages can be self-stabilizing, this should not be interpreted as
 511 endorsement of complacency toward biological invasions or habitat
 512 disruption. The stabilizing mechanisms we identify are weaker and
 513 more variable than those in coevolved communities, and our model
 514 does not capture ecosystem functions beyond species persistence.

515 *Reproducibility.* All simulations use fixed random seeds (42, 123,
 516 999) for full reproducibility. Source code, data, and figures are pub-
 517 licly available. Experiments were conducted using NumPy’s default
 518 random number generator with explicitly seeded instances.

519 *Data and code availability.* All simulation code, raw data outputs,
 520 and figure generation scripts are provided in the supplementary
 521 materials. No empirical data were collected; all results are from
 522 numerical simulations.

523 REFERENCES

- [1] Peter B. Adler, Janneke Hille Ris Lambers, and Jonathan M. Levine. 2007. A niche for neutrality. *Ecology Letters* 10, 2 (2007), 95–104. <https://doi.org/10.1111/j.1461-0248.2006.00996.x>
- [2] György Barabás, Rafael D’Andrea, and Simon Maccracken Stump. 2018. Chesson’s coexistence theory. *Ecological Monographs* 88, 3 (2018), 277–303. <https://doi.org/10.1002/ecm.1302>
- [3] Peter Chesson. 2000. Mechanisms of maintenance of species diversity. *Annual Review of Ecology and Systematics* 31, 1 (2000), 343–366. <https://doi.org/10.1146/annurev.ecolsys.31.1.343>
- [4] Tadashi Fukami. 2015. Historical contingency in community assembly: integrating niches, species pools, and priority effects. *Annual Review of Ecology, Evolution, and Systematics* 46 (2015), 1–23. <https://doi.org/10.1146/annurev.ecolsys.110411-160340>
- [5] Rachel M. Germain, Simon P. Hart, Martin M. Turcotte, Sarah P. Otto, Jaime Sakarchi, Jonathan Rolland, Mason W. Kulbaba, and Jennifer S. Johnson. 2021. On the origin of coexisting species. *Trends in Ecology & Evolution* 36, 4 (2021), 284–293. <https://doi.org/10.1016/j.tree.2020.11.006>
- [6] Oscar Godoy, Nathan J. B. Kraft, and Jonathan M. Levine. 2014. Phylogenetic relatedness and the determinants of competitive outcomes. *Ecology Letters* 17, 7 (2014), 836–844. <https://doi.org/10.1111/ele.12289>
- [7] Stephen P. Hubbell. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. *Princeton University Press* (2001).
- [8] Nathan J. B. Kraft, Peter B. Adler, Oscar Godoy, Emily C. James, Steve Fuller, and Jonathan M. Levine. 2015. Community assembly, coexistence and the environmental filtering metaphor. *Functional Ecology* 29, 5 (2015), 592–599. <https://doi.org/10.1111/1365-2435.12345>
- [9] Alfred J. Lotka. 1925. Elements of Physical Biology. *Williams and Wilkins* (1925).
- [10] Margaret M. Mayfield and Jonathan M. Levine. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. *Ecology Letters* 13, 9 (2010), 1085–1093. <https://doi.org/10.1111/j.1461-0248.2010.01509.x>
- [11] Remi Reynebeau et al. 2026. Rare species advantage in Antarctic lakes. *arXiv preprint arXiv:2601.14213* (2026). arXiv:2601.14213 [q-bio.PE]
- [12] Jurg W. Spaak and Frederik De Laender. 2020. Intuitive and broadly applicable definitions of niche and fitness differences. *Ecology Letters* 23, 7 (2020), 1117–1128. <https://doi.org/10.1111/ele.13511>
- [13] Casey P. terHorst, Jay T. Lennon, and Jennifer A. Lau. 2014. The relative importance of rapid evolution for plant–microbe interactions depends on ecological context. *Proceedings of the Royal Society B: Biological Sciences* 281, 1785 (2014), 20140028. <https://doi.org/10.1098/rspb.2014.0028>
- [14] Martin M. Turcotte, David N. Reznick, and J. Daniel Hare. 2011. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. *Ecology Letters* 14, 11 (2011), 1084–1092. <https://doi.org/10.1111/j.1461-0248.2011.01676.x>
- [15] Vito Volterra. 1926. Fluctuations in the abundance of a species considered mathematically. *Nature* 118 (1926), 558–560. <https://doi.org/10.1038/118558a0>
- [16] Lei Zhao, Quan-Guo Zhang, and Da-Yong Zhang. 2019. Evolution alters ecological mechanisms of coexistence in experimental microcosms. *Functional Ecology* 33, 7 (2019), 1279–1291. <https://doi.org/10.1111/1365-2435.13330>