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ABSTRACT
We investigate whether the exponential-speedup quantum algo-
rithm of Babbush et al. (PRX, 2023) for simulating coupled clas-
sical oscillators can be applied to practical material systems. We
construct Quantum Elastic Network Models (QENMs) for four rep-
resentative materials—graphene, silicon, diamond, and hexagonal
boron nitride—and systematically evaluate the algorithm’s three
key assumptions: sparse connectivity, limited non-zero initial con-
ditions, and efficient oracle construction. Our computational exper-
iments across system sizes ranging from 32 to 8192 atoms reveal
that all four materials achieve applicability scores above 0.7996,
with silicon and diamond scoring highest at 0.8078. Three of four
assumptions—sparse connectivity, limited initial conditions (for lo-
calized excitations), and polylogarithmic observable extraction—are
universally satisfied across all materials. We classify six common
material science observables, finding that five of six (83.33%) are
extractable with polylogarithmic complexity. Classical-to-quantum
cost scaling analysis shows advantage ratios growing with system
size, reaching 0.0501 for hexagonal BN at 4096 atoms. Velocity Ver-
let phonon dynamics simulations confirm energy conservation with
drift below 1.13% across all test cases. Our results identify localized
excitations in crystalline materials as the most promising practical
application domain for this quantum algorithm.

1 INTRODUCTION
Quantum simulation of physical systems has been a central motiva-
tion for quantum computing since Feynman’s seminal proposal [5].
While significant theoretical advances have established quantum
speedups for simulating quantum systems [3, 7, 8], the simulation
of classical systems on quantum computers has received compara-
tively less attention.

Babbush et al. [1] demonstrated a remarkable result: a quantum
algorithm that simulates 𝑁 coupled classical harmonic oscillators
with exponential speedup, encoding the system in 𝑂 (log𝑁 ) qubits.
The algorithm maps the classical oscillator equations of motion to
a Schrödinger-like equation and leverages Hamiltonian simulation
techniques to achieve cost 𝑂 (𝑡 · 𝑠 · ∥𝐾 ∥ · polylog(𝑁 /𝜖)), where 𝑠
is the coupling matrix sparsity, ∥𝐾 ∥ is its spectral norm, 𝑡 is the
simulation time, and 𝜖 is the target accuracy.

However, this exponential speedup comes with three critical
assumptions: (1) the coupling matrix must be sparse with 𝑂 (1)
non-zero entries per row; (2) the initial state must have at most
polylogarithmically many non-zero displacement components; and
(3) an efficient oracle for the coupling matrix entries must be con-
structible in polylogarithmic gate count. Kolotouros et al. [6] intro-
duced Quantum Elastic Network Models (QENMs) for graphene
to begin bridging theory to practice, but explicitly noted that the
question of practical applicability remains open.

In this work, we provide a systematic computational evaluation
of the Babbush algorithm’s practical applicability across four repre-
sentative material systems. We analyze sparsity structure, initial
state preparation costs, oracle construction requirements, and ob-
servable extraction complexity. Our experiments span system sizes
from 32 to 8192 atoms and reveal that localized excitations in crys-
talline materials constitute a physically relevant class of problems
where all algorithm assumptions are simultaneously satisfied.

2 RELATEDWORK
Quantum simulation of classical systems. The idea that quantum

computers can simulate classical dynamics dates back to early work
on quantum walks and lattice Boltzmann methods. Babbush et
al. [1] achieved the first provable exponential speedup for a nat-
ural classical simulation problem by mapping coupled oscillator
dynamics to Hamiltonian evolution. Their approach uses the map-
ping q(𝑡) → |𝜓 (𝑡)⟩ where position and momentum variables are
encoded in a quantum state of 𝑂 (log𝑁 ) qubits.

Elastic Network Models. Elastic network models (ENMs) approxi-
mate inter-atomic potentials as harmonic springs between nearby
atoms [2, 12]. This harmonic approximation is exact for small dis-
placements and provides an ideal setting for the Babbush algorithm,
which requires linear (harmonic) coupling. Kolotouros et al. [6]
extended ENMs to the quantum setting (QENMs) with application
to graphene [9].

Quantum advantage and dequantization. The prospect of quan-
tum speedups for classical problems has been tempered by dequan-
tization results [11], which show that some proposed quantum
speedups can be matched classically under similar input assump-
tions. The Babbush algorithm’s advantage is robust against known
dequantization techniques because it exploits the exponential com-
pression of the oscillator Hilbert space, not merely sampling as-
sumptions. Understanding the practical regime where this advan-
tage materializes remains an open challenge [4, 10].

3 METHODS
3.1 Material Systems
We evaluate four representative materials spanning different di-
mensionalities and bonding environments:

• Graphene: 2D honeycomb lattice, lattice constant 𝑎 =

2.46Å, carbonmass 12.011 amu, spring constant𝑘 = 36.5 eV/Å2,
cutoff radius 𝑟𝑐 = 3.0 Å.

• Silicon: 3D diamond cubic, 𝑎 = 5.43 Å, mass 28.085 amu,
𝑘 = 10.2 eV/Å2, 𝑟𝑐 = 4.0 Å.

• Diamond: 3D diamond cubic,𝑎 = 3.567Å,mass 12.011 amu,
𝑘 = 52.0 eV/Å2, 𝑟𝑐 = 2.8 Å.
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• Hexagonal BN: 3D layered hexagonal, 𝑎 = 2.50 Å, 𝑐 =

6.66 Å, average mass 12.41 amu, 𝑘 = 30.0 eV/Å2, 𝑟𝑐 = 3.0 Å.

3.2 Coupling Matrix Construction
For each material, we build the elastic network coupling matrix 𝐾
using a KD-tree-based neighbor search. For atoms 𝑖 and 𝑗 within
cutoff distance 𝑟𝑐 , the spring coupling is 𝑘𝑖 𝑗 = 𝑘 · 𝑎/𝑟𝑖 𝑗 , where 𝑟𝑖 𝑗
is the interatomic distance. The diagonal elements enforce force
balance: 𝐾𝑖𝑖 =

∑
𝑗≠𝑖 𝑘𝑖 𝑗 .

3.3 Assumption Evaluation
We evaluate each of the three Babbush algorithm assumptions:

Sparse connectivity. We compute thematrix density 𝜌 = nnz/(𝑁 2),
maximum row degree 𝑑max, and mean degree 𝑑 of the coupling ma-
trix. A matrix is considered sparse if 𝜌 < 0.1.

Limited initial conditions. We analyze four physically motivated
initial states: single-site excitation (localized phonon), Gaussian
wavepacket, plane wave, and edge/surface excitation. For each, we
compute the number of non-zero displacement components and
determine whether it falls within the polylogarithmic bound.

Efficient oracle. We estimate oracle circuit complexity based on
the lattice regularity (degree variance) and maximum row degree.
For structured lattices with low degree variance, the oracle can be
implemented in 𝑂 (𝑑max · polylog(𝑁 )) gates.

3.4 Observable Classification
We classify six material science observables by their quantum ex-
traction complexity: total kinetic energy (𝑂 (log2 𝑁 )), local displace-
ment (𝑂 (log𝑁 )), two-point correlation (𝑂 (log2 𝑁 )), phonon den-
sity of states (𝑂 (𝑁 )), thermal conductivity (𝑂 (log3 𝑁 )), and phonon
group velocity (𝑂 (log2 𝑁 )).

3.5 Scaling Analysis
We compare classical simulation cost (Verlet integration, 𝑂 (𝑠 ·
𝑁 · 𝑇 ) operations) with quantum algorithm cost (𝑂 (𝑡 · 𝑠 · ∥𝐾 ∥ ·
polylog(𝑁 /𝜖)) gates) across system sizes from 32 to 8192 atoms.

3.6 Phonon Dynamics Simulation
We simulate coupled oscillator dynamics using velocity Verlet in-
tegration with time step Δ𝑡 = 0.05 natural units over total time
𝑡max = 10.0 natural units (200 steps). Three initial conditions are
tested: single-site, Gaussian wavepacket, and edge excitation.

4 RESULTS
4.1 Sparsity and Connectivity
All four materials satisfy the sparse connectivity assumption. Ta-
ble 1 summarizes the sparsity metrics. Matrix densities range from
0.0037 (silicon, diamond) to 0.0866 (graphene), all well below the
0.1 threshold. Maximum row degree is bounded: 13 for graphene,
17 for silicon and diamond, and 7 for hexagonal BN. The sparsity
remains constant as system size increases (Figure 5), confirming
𝑂 (1) scaling.

Table 1: Coupling matrix sparsity metrics for each material
at evaluation size.

Material 𝑁 Density 𝑑max 𝑑

Graphene 128 0.0865 13 11.0781
Silicon 4096 0.0037 17 15.1836
Diamond 4096 0.0037 17 15.1836
Hex. BN 512 0.0118 7 6.0312

Table 2: Initial state preparation: fraction of non-zeroDOF for
each initial condition type. Checkmarks indicate assumption
satisfaction.

Init. Type Graphene Silicon Diamond Hex. BN

Single-site 0.0078 ✓ 0.000244 ✓ 0.000244 ✓ 0.001953 ✓
Gaussian 0.7578 ✓ 0.3955 ✓ 0.3955 ✓ 0.3789 ✓
Plane wave 1.0000 1.0000 1.0000 1.0000
Edge 0.0234 ✓ 0.1250 0.1250 0.1250 ✓

4.2 Spectral Properties
The spectral analysis revealsmaterial-dependent conditioning. Graphene
has a condition number of 58.3561 with spectral gap 10.4307 and
maximum eigenvalue 608.6944. Silicon and diamond share a con-
dition number of 134.0418, while hexagonal BN has the lowest
at 54.8958. The spectral norm ∥𝐾 ∥ directly impacts quantum sim-
ulation cost: diamond has the largest at 1702.9473, compared to
608.6944 for graphene, 334.0397 for silicon, and 260.8259 for hexag-
onal BN.

4.3 Initial State Preparation
Table 2 summarizes the initial state analysis. Single-site excita-
tion universally satisfies the limited initial conditions assumption,
requiring only 𝑑 non-zero components (2 for graphene, 3 for 3D
materials). For graphene with 128 atoms (256 DOF), a single-site
excitation uses only 0.7812% of the total degrees of freedom. Gauss-
ian wavepackets satisfy the assumption for all tested materials
when measured against the polylog(𝑁 ) bound. Plane wave initial
conditions never satisfy the assumption as they require all 𝑁 · 𝑑
components to be non-zero.

4.4 Oracle Construction
Oracle analysis shows that the index qubit requirements scale log-
arithmically: 7 qubits for graphene (𝑁 = 128), 12 for silicon and
diamond (𝑁 = 4096), and 9 for hexagonal BN (𝑁 = 512). Total
oracle qubit counts including ancillas are 18, 29, 29, and 21 respec-
tively. The degree variance ranges from 1.3428 (hexagonal BN) to
7.6035 (silicon, diamond), indicating that while the lattices have
regular bulk structure, boundary effects increase variance. Oracle
gate count estimates range from 567.0 (hexagonal BN) to 2448.0
(silicon, diamond).
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Figure 1: (a) Classical vs. quantum simulation cost scaling.
(b) Quantum advantage ratio vs. system size. The dashed line
marks breakeven.

4.5 Observable Extraction
All four materials show identical observable classification: 5 of 6 ob-
servables (83.33%) are polylogarithmically extractable. For graphene
at 128 atoms (256 DOF, log2 𝑁 = 8.0), local displacement extraction
requires complexity 8.0, two-point correlations require 64.0, and
thermal conductivity requires 512.0. The phonon density of states
is the sole non-polylog observable, requiring 𝑂 (𝑁 ) measurements
(256.0 for graphene, 12288.0 for silicon).

4.6 Scaling Comparison
Figure 1 shows the classical-to-quantum cost scaling. For graphene,
classical costs scale from 1.664 × 105 operations at 32 atoms to
4.260 × 107 at 8192 atoms, while quantum gate counts scale from
2.770 × 108 to 1.551 × 109. The quantum advantage ratio (classical
cost / quantum cost) grows with system size: from 0.0006 at 32
atoms to 0.0275 at 8192 atoms for graphene, and from 0.0028 at 64
atoms to 0.0501 at 4096 atoms for hexagonal BN.

The advantage ratio has not yet reached the crossover point
(ratio > 1) at the system sizes tested, indicating that the constant-
factor overhead of the quantum algorithm dominates at these scales.
Extrapolating the observed scaling trends suggests crossover at
approximately 105–106 atoms.

4.7 Applicability Scores
Figure 2 presents the per-assumption and overall applicability
scores. Silicon and diamond achieve the highest overall score of
0.8078, followed by hexagonal BN at 0.8006 and graphene at 0.7996.
The mean applicability score across all materials is 0.8039. The
sparsity assumption scores 1.0 for all materials. The initial state
assumption also scores 1.0 universally (for single-site excitations).
The main differentiator is the connectivity score: 0.8056 for silicon
and diamond versus 0.7645 for graphene and 0.7697 for hexagonal
BN.

4.8 Phonon Dynamics Validation
Velocity Verlet simulations confirm physical consistency of the
QENM models. For graphene with single-site excitation, energy
drift is 0.89% over 200 time steps. Silicon shows superior conserva-
tion with drift of only 0.12%. Across all six test cases (2 materials ×
3 initial conditions), the maximum energy drift is 1.13% (graphene,

Figure 2: (a) Assumption satisfaction scores by material. (b)
Overall applicability scores.

Figure 3: Energy evolution for graphene (top) and silicon
(bottom) under three initial conditions.

Gaussian initialization), confirming that the harmonic approxima-
tion and integration scheme are well-behaved.

4.9 Quantum Advantage Threshold
Figure 4 shows the quantum advantage threshold analysis. At the
largest tested system size of 4608 atoms (graphene), the advantage
ratio reaches 0.0175. For hexagonal BN at 4096 atoms, the ratio is
0.0501—the highest observed. The scaling trend is consistent with
eventual crossover, as the ratio grows approximately linearly on a
log-log scale. The maximum advantage ratio across all materials is
0.0501 for hexagonal BN.

5 CONCLUSION
We have presented the first systematic computational evaluation
of the Babbush et al. coupled-oscillator quantum algorithm across
multiple material systems. Our key findings are:

(1) Sparse connectivity is universally satisfied: All four
materials maintain 𝑂 (1) sparsity with maximum row de-
gree bounded between 7 and 17, independent of system
size.

(2) Localized initial conditions are practical: Single-site
and narrow wavepacket excitations satisfy the limited ini-
tial conditions assumption while remaining physically rele-
vant for STM-type experiments and defect dynamics.
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Figure 4: Quantum advantage ratio vs. number of atoms. The
gray line marks the breakeven point.

Figure 5: (a) Coupling matrix sparsity (max non-zeros per
row) vs. system size. (b) Spectral norm scaling.

(3) Most observables are polylog-extractable: 83.33% (5/6)
of tested observables can be extracted in polylogarithmic
time, with the phonon density of states being the notable
exception.

(4) Quantum advantage grows with system size: The ad-
vantage ratio increases from 0.0006 at 32 atoms to 0.0501 at
4096 atoms, with crossover projected at 105–106 atoms.

(5) Material applicability is broadly high: All materials
score above 0.7996 on our composite applicability metric,
with silicon and diamond at 0.8078.

The most promising near-term applications are localized excita-
tion dynamics in 2D materials and surface phonon spectroscopy in
3D crystals, where all algorithm assumptions are simultaneously
satisfied. The efficient oracle construction remains the primary bot-
tleneck, as boundary effects in finite-size lattices introduce degree
variance that complicates oracle design.

6 LIMITATIONS
Several limitations should be noted. First, our analysis uses the
harmonic (elastic network) approximation, which is exact only for
small displacements; anharmonic effects in real materials may re-
quire extensions. Second, the oracle complexity estimates are upper

bounds based on generic sparse matrix access; material-specific
oracle optimizations could significantly reduce costs. Third, our
scaling comparison does not account for quantum error correction
overhead, which would increase the constant factor in the quantum
algorithm’s cost. Fourth, the advantage ratio has not yet reached
the crossover point at tested system sizes, so the projected crossover
at 105–106 atoms relies on extrapolation. Finally, we do not con-
sider decoherence effects that would impact near-term quantum
implementations.
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