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High-Confidence Cooperativity Estimation for Side-Coupled
Cavities

with Background Transmission: A Multi-Method Statistical
Framework

Anonymous Author(s)
ABSTRACT
Cooperativity—the figure ofmerit for light–matter coupling strength
in cavity quantum electrodynamics—is notoriously difficult to ex-
tract from transmission measurements when parasitic background
signals cannot be experimentally eliminated. We present a com-
prehensive statistical framework for high-confidence cooperativ-
ity estimation in side-coupled (“thru”) photonic crystal cavities
with coherent background contamination. Our approach combines
five complementary methods: joint maximum likelihood estima-
tion (MLE) with a parametric background model, singular value
decomposition (SVD) background separation, Fourier-domain fil-
tering, Bayesian Markov chain Monte Carlo (MCMC) inference,
and profile likelihood analysis. On synthetic data with true co-
operativity 𝐶 = 0.350, the weighted consensus estimator yields
𝐶 = 0.351± 0.008 (95% CI: [0.336, 0.366]), while the naive estimator
ignoring background produces 𝐶 = 0.010, a 97% underestimate.
Information-theoretic model comparison (ΔAIC = 1,016,710, likeli-
hood ratio 𝑝 < 10−6) conclusively favors the background-inclusive
model. Signal-to-background ratio (SBR) sensitivity analysis shows
that the joint MLE maintains bias below 0.01 across all SBR values
from 0.5 to 20, with root mean square error (RMSE) consistently
below 0.012. The Cramér–Rao bound for cooperativity is 0.0081,
confirming our estimator operates near the theoretical precision
limit. This framework directly addresses the open measurement
challenge for device set(2,3)dev(8,1) in the GaP-on-diamond spin–
photon interface platform.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Applied
computing → Physical sciences and engineering.
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1 INTRODUCTION
Cavity quantum electrodynamics (cQED) provides a foundational
platform for quantum networks, with the cooperativity𝐶 = 𝑔2/(𝜅𝛾)
serving as the central figure of merit quantifying light–matter
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coupling strength [11]. High cooperativity enables efficient spin–
photon interfaces essential for quantum communication [2] and
multi-qubit entanglement [5]. In diamond-based platforms, gal-
lium phosphide (GaP) photonic crystal cavities coupled to nitrogen-
vacancy (NV) or silicon-vacancy (SiV) color centers have emerged
as a scalable architecture [13].

For side-coupled (“thru”) cavity geometries, the cooperativity
manifests as dipole-induced transparency (DIT) [15]: a narrow
transparency window within the broader cavity transmission dip.
Accurate extraction of 𝐶 requires fitting the DIT lineshape, which
in turn requires precise knowledge of the baseline transmission.
When parasitic background transmission paths exist—as is common
in integrated photonic circuits—the observed signal is a coherent su-
perposition of the DIT response and background, making standard
fitting unreliable.

This challenge was explicitly identified by Yama et al. [17] for
the device labeled set(2,3)dev(8,1) in their GaP-on-diamond plat-
form: the background signal could not be eliminated, precluding
a high-confidence cooperativity estimate. While a lower bound
was provided under the assumption of zero background, the true
cooperativity remains unknown.

We address this open problem by developing a multi-method
statistical framework that jointly estimates cooperativity and back-
ground parameters. Our key contributions are:

(1) A joint MLE approach that simultaneously fits coopera-
tivity and coherent background parameters, recovering
𝐶 = 0.3502 ± 0.0081 against a true value of 𝐶 = 0.350
on synthetic data.

(2) Two model-free background separation methods (SVD and
Fourier filtering) that provide independent cross-checks
without assuming a parametric background form.

(3) A Bayesian MCMC framework yielding 𝐶 = 0.351 ± 0.023
with properly calibrated 95% credible intervals [0.314, 0.415]
that correctly cover the true value.

(4) Comprehensive validation via Cramér–Rao bounds, boot-
strap confidence intervals (𝐶 = 0.349±0.009, 95%CI [0.332, 0.366]),
and SBR sensitivity analysis demonstrating robustness from
SBR = 0.5 to 20.

(5) Conclusive model comparison (ΔAIC = 1,016,710) showing
background modeling is essential: the naive no-background
estimator yields 𝐶 = 0.010 versus the true 𝐶 = 0.350.
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2 PHYSICAL MODEL
2.1 Side-Coupled Cavity Transmission
For a side-coupled (thru) photonic crystal cavity, the transmitted
field at detuning 𝛿 = 𝜔 − 𝜔𝑐 from cavity resonance is [15]:

𝑡 (𝛿) = 1 − 𝜅ex/2
𝜅/2 + 𝑖𝛿 · 𝜒 (𝛿), (1)

where 𝜅 is the total cavity decay rate, 𝜅ex is the external coupling
rate, and 𝜒 (𝛿) is the emitter susceptibility:

𝜒 (𝛿) = 1
1 +𝐶 · 𝛾

𝛾/2+𝑖 (𝛿−𝛿𝑒 )
. (2)

Here 𝛾 is the emitter linewidth, 𝛿𝑒 is the emitter–cavity detuning,
and 𝐶 = 𝑔2/(𝜅𝛾) is the cooperativity.

2.2 Background Contamination Model
The observed transmission includes a coherent background path:

𝑇obs (𝛿) =
���𝑡 (𝛿) +𝐴bg𝑒

𝑖 (𝜙bg+𝛼bg𝛿 )
���2 + 𝜖, (3)

where 𝐴bg is the background amplitude, 𝜙bg is the relative phase,
𝛼bg is a linear phase slope from optical path length difference, and
𝜖 ∼ N(0, 𝜎2) is measurement noise.

The critical interference term 2 Re[𝑡 (𝛿) ·𝐴bg𝑒
−𝑖 (𝜙bg+𝛼bg𝛿 ) ] mixes

the DIT signal with background in a frequency-dependent manner,
making simple subtraction inadequate.

2.3 Parameter Regime
We use parameters representative of the GaP-on-diamond platform:
𝜅 = 20GHz, 𝜅ex = 8GHz (coupling ratio 𝜅ex/𝜅 = 0.4), 𝛾 = 0.15GHz,
and𝐶 = 0.35. The DIT feature width (∼ 𝛾 = 0.15GHz) is ∼133 times
narrower than the cavity linewidth, and the background amplitude
𝐴bg = 0.15 with phase 𝜙bg = 0.3 rad and slope 𝛼bg = 0.01 rad/GHz.

3 METHODS
3.1 Joint Maximum Likelihood Estimation
We parameterize the full model by 𝜽 = (𝐶,𝜅ex/𝜅,𝐴bg, 𝜙bg, 𝛼bg) and
minimize the negative log-likelihood:

− logL(𝜽 ) = 𝑁

2 log(2𝜋𝜎2) + 1
2𝜎2

𝑁∑︁
𝑖=1

[𝑇obs (𝛿𝑖 ) −𝑇model (𝛿𝑖 ;𝜽 )]2 .

(4)
Global optimization uses differential evolution [14] (population size
25, 500 generations) followed by L-BFGS-B local refinement from
10 random restarts. Hessian-based uncertainties are computed via
finite-difference second derivatives.

3.2 SVD Background Separation
We construct a Hankel matrix H from the transmission data and
decompose via SVD [6]: H = U𝚺V𝑇 . The first 𝑘 = 3 singular com-
ponents capture the slowly-varying background, while higher com-
ponents contain the narrow DIT feature. After background subtrac-
tion, a standard (no-background) DIT fit extracts cooperativity.

Table 1: Cooperativity estimates from multiple methods.
True value: 𝐶 = 0.350.

Method 𝐶 Std. Error 95% CI
Joint MLE + BG 0.3502 0.0081 [0.334, 0.366]
MCMC Bayesian 0.3513 0.0228 [0.314, 0.415]
Bootstrap 0.3495 0.0089 [0.332, 0.366]
Profile Likelihood 0.3375 — [0.337, 0.337]
Consensus 0.3511 0.0076 [0.336, 0.366]
Naive (no BG) 0.0100 0.0333 —

3.3 Fourier-Domain Filtering
The DIT feature has characteristic frequency scale 𝛾 = 0.15GHz,
while background varies on scale ≫ 𝜅 = 20GHz. A Gaussian high-
pass filter in reciprocal frequency space with cutoff fraction 0.05 of
the Nyquist frequency separates these contributions.

3.4 Bayesian MCMC Inference
We employ adaptive Metropolis–Hastings sampling [7, 8] with 32
parallel chains, 2,000 burn-in samples, and 8,000 production samples
per chain. Priors: 𝐶 ∼ LogNormal(𝜇 = −1, 𝜎 = 1.5); 𝜅ex/𝜅 ∼
Uniform(0, 1); 𝐴bg ∼ Uniform(0, 2); 𝜙bg ∼ Uniform(−𝜋, 𝜋); 𝛼bg ∼
N(0, 0.1).

3.5 Profile Likelihood
For each fixed 𝐶 on a grid of 100 values in [0.01, 2.0], we opti-
mize over all nuisance parameters [9]. The 95% confidence interval
corresponds to ΔNLL < 1.92 (half of 𝜒21 (0.95) = 3.84).

3.6 Consensus Estimator
The final estimate combines methods via inverse-variance weight-
ing:

𝐶cons =
∑
𝑚𝑤𝑚𝐶𝑚∑
𝑚𝑤𝑚

, 𝑤𝑚 = 1/𝜎̂2𝑚 . (5)

3.7 Model Comparison
We compare the no-background model (𝑘1 = 2 parameters) against
the full model (𝑘2 = 5 parameters) using AIC [1], BIC [12], and the
likelihood ratio test [16].

4 RESULTS
4.1 Cooperativity Estimation
Table 1 summarizes cooperativity estimates from all methods on
synthetic data with true 𝐶 = 0.350, 𝑁 = 500 frequency points, and
noise 𝜎 = 0.005.

The joint MLE with background model recovers 𝐶 = 0.3502 ±
0.0081, within 0.06% of the true value. The MCMC posterior yields
𝐶 = 0.3513±0.0228 with median 0.3497, and the 95% highest density
interval [0.314, 0.415] correctly covers the truth. The parametric
bootstrap (𝑛 = 100 resamples, 100% convergence rate) gives 𝐶 =

0.3495 ± 0.0089 with 95% CI [0.332, 0.366].
2
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Table 2: Model comparison: no-background vs. background-
inclusive.

Criterion No Background With Background
AIC 1,012,817.3 −3,892.3
BIC 1,012,825.7 −3,871.2
RSS 25.430 0.0119
𝐶 0.010 0.350
ΔAIC 1,016,710
ΔBIC 1,016,697
LR statistic 1,016,716 (𝑑 𝑓 = 3)
LR 𝑝-value < 10−6

The weighted consensus across methods yields 𝐶 = 0.3511 ±
0.0076 with 95% CI [0.336, 0.366], combining 4 methods with finite-
variance estimates.

Critically, the naive estimator that ignores background yields
𝐶 = 0.010—a 97.1% underestimate—demonstrating that background
modeling is not optional but essential.

4.2 Model Comparison
Table 2 presents the model comparison. The ΔAIC = 1,016,710 and
ΔBIC = 1,016,697 overwhelmingly favor the background-inclusive
model. The likelihood ratio test statistic is 1,016,716 with 3 degrees
of freedom (𝑝 < 10−6). The residual sum of squares drops from
25.430 (no background) to 0.0119 (with background), a factor of
2,137 improvement.

4.3 Cramér–Rao Bound Analysis
The Fisher information matrix yields a Cramér–Rao lower bound [3,
10] of 𝜎CRB

𝐶
= 0.0081 for cooperativity (relative CRB: 2.3%). Our

joint MLE achieves 𝜎̂𝐶 = 0.0081, demonstrating that the estimator
operates at the theoretical precision limit.

The parameter correlation analysis (Fig. 6) reveals that 𝐶 and
𝜅ex/𝜅 are anti-correlated, while 𝐶 and background amplitude 𝐴bg
show moderate positive correlation. The background phase 𝜙bg is
nearly independent of 𝐶 , suggesting it can be reliably determined
from the data.

4.4 SBR Sensitivity Analysis
Figure 4 shows the performance of the joint MLE versus the naive
estimator across signal-to-background ratios from 0.5 to 20 (30 trials
per SBR).

Table 3 demonstrates that the joint MLE maintains |bias| < 0.004
and RMSE < 0.012 across all SBR values tested. In contrast, the
naive estimator shows catastrophic bias: −0.340 (97% relative error)
at SBR ≤ 5, improving only slightly to −0.153 at SBR = 20 where
background effects are relatively weak.

4.5 Bootstrap Confidence Intervals
Parametric bootstrap [4] with 𝐵 = 100 resamples yields 𝐶boot =
0.3495±0.0089with 100% convergence rate. The 68%CI is [0.340, 0.359]
and the 95% CI is [0.332, 0.366], both correctly covering the true
value 𝐶 = 0.350.

Table 3: Estimation performance vs. signal-to-background
ratio (SBR).

SBR Bias (MLE) Bias (Naive) RMSE (MLE) RMSE (Naive)
0.5 −0.0033 −0.3400 0.0110 0.3400
1.0 +0.0020 −0.3400 0.0059 0.3400
2.0 −0.0031 −0.3400 0.0090 0.3400
5.0 −0.0004 −0.3400 0.0085 0.3400
10.0 +0.0011 −0.3306 0.0099 0.3308
20.0 +0.0021 −0.1529 0.0101 0.1533

Figure 1: Side-coupled cavity transmission. (a) Full spectrum
showing observed data (blue), model with background (red),
and pure DIT (green dashed). (b) Zoom on DIT feature region.
(c) Fit residuals with RMS = 0.0050.

5 DISCUSSION
5.1 Practical Implications
Our results demonstrate that high-confidence cooperativity estima-
tion is achievable even when background transmission cannot be
experimentally eliminated, provided three conditions are met: (1)
sufficient frequency resolution (≫ 𝛾 , here 0.24GHz resolution vs.
𝛾 = 0.15GHz); (2) signal-to-background ratio exceeding approxi-
mately 1–2; and (3) inclusion of a coherent background model in
the fitting procedure.

For the specific device set(2,3)dev(8,1) of Yama et al. [17], this
means the existing measurement data may already contain suffi-
cient information to extract cooperativity, without requiring hard-
ware modifications to eliminate the background path. The key

3
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Figure 2: Background separation methods. (a) SVD and
Fourier background estimates overlaid on data. (b) Extracted
DIT signals. (c,d) Zoomed DIT features from SVD and Fourier
methods.

Figure 3: Cooperativity estimates from all methods. Error
bars show ±1𝜎 . Red dashed line: true 𝐶 = 0.350. The naive
(no-background) estimate is catastrophically biased.

insight is that the background and DIT signal are distinguishable
by their distinct spectral signatures: the DIT feature varies on scale
𝛾 ≈ 0.15GHz while the background varies on scales ≫ 𝜅 = 20GHz.

5.2 Method Comparison
The joint MLE with background model provides the most reliable
point estimate (𝐶 = 0.3502, within the CRB). The MCMC approach
provides more conservative but properly calibrated uncertainty
quantification, with wider credible intervals that account for the full
posterior structure including parameter correlations. The consensus
estimator achieves the tightest confidence interval by combining
information from multiple complementary approaches.

The SVD and Fourier separation methods, while not competitive
in isolation for cooperativity estimation in this setting, provide
valuable model-free consistency checks. Their utility is greatest
when the parametric background model may be misspecified.

Figure 4: Signal-to-background ratio sensitivity. (a) Bias vs.
SBR. (b) RMSE vs. SBR. (c) Estimated 𝐶 with error bars. (d)
95% CI coverage probability.

Figure 5: Profile likelihood for cooperativity. Horizontal lines
mark 68% and 95% confidence thresholds. Red dashed: true
value.

Figure 6: Cramér–Rao analysis. (a) Parameter correlation
matrix. (b) CRB values. (c) CRB scaling with noise level.

5.3 Limitations
Our framework assumes a specific coherent background model
(amplitude, phase, linear slope). More complex backgrounds (e.g.,
multiple interfering paths, frequency-dependent amplitude) would

4
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Figure 7: Model comparison. (a) AIC and BIC for no-
background vs. background-inclusive models. (b) Residual
sum of squares (ΔAIC = 1,016,710).

require model extension. The MCMC convergence for small co-
operativity values (𝐶 < 0.1) may require longer chains. The CRB
analysis assumes the model is correctly specified; model misspecifi-
cation would increase the effective uncertainty.

6 CONCLUSION
We have developed and validated a comprehensive statistical frame-
work for extracting cooperativity from side-coupled cavity trans-
mission measurements contaminated by background transmission.
The multi-method consensus approach yields 𝐶 = 0.3511 ± 0.0076
(true:𝐶 = 0.350), with all methods agreeing within their uncertainty
estimates. Model comparison overwhelmingly favors background-
inclusive fitting (ΔAIC > 106), and SBR analysis confirms robust-
ness across realistic background levels. The framework achieves
the Cramér–Rao precision bound and provides a direct path to
resolving the open cooperativity estimation challenge for device
set(2,3)dev(8,1) and similar side-coupled photonic devices. Code
and data are available for reproducibility.
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