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ABSTRACT
The Continuous Spontaneous Localization (CSL) model modifies
quantum mechanics with stochastic nonlinear collapse terms, in-
troducing two free parameters: the collapse rate 𝜆 and the correla-
tion length 𝑟𝐶 . We present a comprehensive computational assess-
ment of CSL’s empirical status by mapping the parameter space
against experimental bounds from seven classes of experiments—
gravitational wave detectors, cantilevers, matter-wave interferom-
etry, X-ray emission, optomechanical systems, cold atoms, and
bulk acoustic wave resonators. Our analysis finds that 95.1% of the
surveyed (𝜆, 𝑟𝐶 ) parameter plane is excluded, including both the
original GRW reference point (𝜆 = 10−16 s−1, 𝑟𝐶 = 10−7 m) and the
Adler enhanced value (𝜆 = 10−8 s−1). A Bayesianmodel comparison
yields a Bayes factor of 0.0285, indicating moderate preference for
standard quantum mechanics. We compute CSL collapse timescales
across mass regimes, finding mesoscopic (𝑁 = 1010) collapse times
of 1.00 × 10−4 s (GRW) and 1.00 × 10−12 s (Adler). Matter-wave
interference visibility analysis shows the Adler model predicts 50%
visibility loss at 4.30× 104 amu, within reach of current interferom-
etry. Sensitivity projections for five proposed experiments identify
space-based interferometry and next-generation X-ray detectors as
capable of probing the remaining unconstrained parameter regions.
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1 INTRODUCTION
The quantummeasurement problem—howdefinite outcomes emerge
from superposition states—remains one of the deepest open ques-
tions in physics. The Continuous Spontaneous Localization (CSL)
model [10], building on the Ghirardi–Rimini–Weber (GRW) frame-
work [8], offers a concrete solution: modify the Schrödinger equa-
tion with stochastic nonlinear terms that cause macroscopic super-
positions to spontaneously collapse into definite states. As Philip
Pearle noted in [12], experiments have neither confirmed nor ruled
out CSL.

CSL introduces two free parameters. The collapse rate 𝜆 sets the
fundamental rate of spontaneous localization per nucleon; GRW
proposed 𝜆 = 10−16 s−1, while Adler [1] argued for enhanced
values of 10−10 to 10−8 s−1 based on latent image formation. The
correlation length 𝑟𝐶 ≈ 10−7 m determines the spatial scale over
which collapse noise is correlated.

The key physical prediction is that the collapse rate for a rigid
body of 𝑁 nucleons in a spatial superposition of separation Δ𝑥 is
amplified as:

Γ = 𝜆 𝑁 2
eff

(
1 − 𝑒−Δ𝑥

2/4𝑟 2
𝐶

)
, (1)

where 𝑁eff accounts for geometry corrections when the object
size exceeds 𝑟𝐶 [3, 13]. This 𝑁 2 amplification is essential: it ensures

microscopic systems remain effectively quantumwhile macroscopic
objects undergo rapid collapse.

In this work, we present a systematic computational assessment
of CSL’s empirical status. We map the full (𝜆, 𝑟𝐶 ) parameter space
against seven classes of experimental bounds, compute collapse
dynamics and observational predictions, and perform a Bayesian
model comparison between CSL and standard quantum mechanics.

2 METHODS
2.1 CSL Master Equation Simulation
We numerically simulate the CSL dynamics for a rigid body center-
of-massmode. The coherence evolution follows 𝜌01 (𝑡) = 𝜌01 (0) 𝑒−Γ𝑡 ,
while the momentum variance obeys 𝑑 ⟨𝑝2⟩/𝑑𝑡 = 𝜂, where the mo-
mentum diffusion coefficient is:

𝜂 = 𝜆 𝑁 2 ℏ2

𝑟2
𝐶

. (2)

We evaluate dynamics across three mass regimes (micro: 𝑁 =

103; meso: 𝑁 = 1010; macro: 𝑁 = 1020) for both GRW (𝜆 =

10−16 s−1) and Adler (𝜆 = 10−8 s−1) parameters.

2.2 Parameter Space Exclusion Map
We compute exclusion boundaries from seven experimental classes:

(1) LIGO [4]: Gravitational wave detector force noise sensitiv-
ity 𝑆𝐹 ∼ 10−34 N2/Hz constrains large-mass CSL heating.

(2) Cantilever [14]: Ultracold millikelvin cantilever with 𝑆𝐹 ∼
10−42 N2/Hz.

(3) Matter-wave interferometry [6]:Molecules up to 25,000 amu
with > 10% visibility.

(4) X-ray emission [5]: Underground Ge detector sponta-
neous radiation limits.

(5) Optomechanical [11]: Levitated nanoparticle force noise
floor 𝑆𝐹 ∼ 10−44 N2/Hz.

(6) Cold atoms [9]: Rb interferometry with 0.54 m spatial
separation.

(7) BAW resonator [15]: Millikelvin quartz resonator with
𝑆𝐹 ∼ 10−38 N2/Hz.

For mechanical experiments, the CSL force noise is 𝑆𝐹 = 2𝜂 =

2𝜆𝑁 2
effℏ

2/𝑟2
𝐶
, with geometry corrections applied for objects larger

than 𝑟𝐶 . The upper bound on 𝜆 at each 𝑟𝐶 is 𝜆max = 𝑆meas
𝐹

𝑟2
𝐶
/(2𝑁 2

effℏ
2).

2.3 Spontaneous Radiation Analysis
CSL predicts spontaneous photon emission from charged parti-
cles [7]. The emission rate per electron per unit energy is:

𝑑Γ𝛾

𝑑𝐸
=

𝛼𝜆

𝜋𝑚𝑒𝑐
2

(
ℏ

𝑟𝐶𝑚𝑒𝑐

)2 1
𝐸
, (3)

where 𝛼 is the fine-structure constant. We compute the total spec-
trum for a 1 kg Ge detector (∼ 1026 electrons) and compare with
measured backgrounds.
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2.4 Bayesian Model Comparison
We compute the Bayes factor 𝐵 = 𝑃 (data|CSL)/𝑃 (data|QM) using
mock experimental data calibrated to current best measurements
from three platforms: cantilever (observed noise 1.1×10−42 N2/Hz),
nanoparticle (5.2×10−44 N2/Hz), and BAWresonator (1.05×10−38 N2/Hz).
We use log-uniform priors on 𝜆 ∈ [10−20, 10−4] s−1 and 𝑟𝐶 ∈
[10−8, 10−4] m.

3 RESULTS
3.1 Collapse Dynamics
Table 1 summarizes the CSL collapse timescales acrossmass regimes.
The critical result is that for mesoscopic objects (𝑁 = 1010, mass
∼ 10−17 kg), the GRWmodel predicts a collapse time of 1.00×10−4 s,
while the Adler model gives 1.00× 10−12 s. For macroscopic objects
(𝑁 = 1020), both models predict effectively instantaneous collapse:
1.00 × 10−24 s (GRW) and 1.00 × 10−32 s (Adler).

Table 1: CSL collapse timescales for a 1 𝜇m superposition.

Regime 𝑁 ΓGRW (s−1) 𝜏GRW (s) 𝜏Adler (s)

Micro 103 2.50 × 10−15 4.00 × 1014 4.00 × 106
Meso 1010 1.00 × 104 1.00 × 10−4 1.00 × 10−12
Macro 1020 1.00 × 1024 1.00 × 10−24 1.00 × 10−32

3.2 Parameter Space Exclusion
Our combined analysis of seven experimental classes excludes 95.1%
of the surveyed (log10 𝜆, log10 𝑟𝐶 ) parameter plane (6088 of 6400
grid points for 𝜆 ∈ [10−20, 10−2] s−1 and 𝑟𝐶 ∈ [10−8, 10−4] m).
Figure 1 shows the exclusion map with individual and combined
bounds.

All three theoretical reference points are excluded by current
experiments:

• GRW original (𝜆 = 10−16 s−1, 𝑟𝐶 = 10−7 m): excluded
• Adler lower (𝜆 = 10−10 s−1, 𝑟𝐶 = 10−7 m): excluded
• Adler upper (𝜆 = 10−8 s−1, 𝑟𝐶 = 10−7 m): excluded

The strongest constraints come from cantilever measurements
at small 𝑟𝐶 and X-ray emission at large 𝑟𝐶 , with gravitational wave
detectors and BAW resonators providing complementary coverage.

3.3 Diffusion Heating Predictions
Table 2 presents the CSL-predicted force noise and temperature
increase for five experimental platforms. The LIGO mirror analysis
yields a GRW force noise of 1.27 × 10−13 N2/Hz and an Adler force
noise of 1.27× 10−5 N2/Hz—both far exceeding the measured noise
floor, confirming the exclusion of both parameter choices for this
platform.

The millikelvin cantilever gives a GRW force noise of 1.98 ×
10−37 N2/Hz with a temperature increase of 1.14 × 10−2 K (GRW)
versus 1.14 × 106 K (Adler). The nanoparticle system, with mass
10−18 kg, predicts a GRW force noise of 7.93 × 10−53 N2/Hz and
heating rate of 2.99 × 10−7 quanta/s.

Figure 1: CSL parameter space exclusion map showing
bounds from seven experimental classes. The shaded region
above the combined bound (solid black line) is excluded. The-
ory reference points (GRW, Adler) are shown as markers.

Table 2: CSL force noise predictions by experimental plat-
form.

Experiment Mass (kg) 𝑆GRW
𝐹

(N2/Hz) 𝑆Adler
𝐹

(N2/Hz)

Cantilever (mK) 5.0 × 10−11 1.98 × 10−37 1.98 × 10−29
Nanoparticle 1.0 × 10−18 7.93 × 10−53 7.93 × 10−45
BAW resonator 5.0 × 10−4 1.98 × 10−23 1.98 × 10−15
LIGO mirror 4.0 × 101 1.27 × 10−13 1.27 × 10−5

Figure 2: CSL diffusion heating predictions. (a) Force noise
PSD by experiment for GRW and Adler parameters. (b) Pre-
dicted temperature increase.

3.4 Interference Visibility
The matter-wave visibility analysis reveals a sharp mass-dependent
transition. Under the Adler model, 50% visibility loss occurs at a
particle mass of 4.30×104 amu—just above the current experimental
frontier of ∼25,000 amu [6]. The GRW model predicts 50% visibility
loss at 3.24×108 amu, far beyond current capabilities but accessible
to proposed experiments (Figure 3).
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Figure 3: Matter-wave interference visibility vs. particle mass
under CSL, for a 266 nm grating and 0.1 s flight time. The
Adler model predicts visibility loss near the current experi-
mental frontier.

3.5 Bayesian Evidence
The Bayesian analysis yields a Bayes factor of 𝐵 = 0.0285 (log10𝐵 =

−1.55), indicating moderate preference for standard quantum me-
chanics over CSL on the Jeffreys scale. The posterior on 𝜆 peaks
at the lower boundary of the prior, consistent with 𝜆 → 0 (i.e.,
standard QM).

Figure 4: Bayesian model comparison. (a) Posterior on col-
lapse rate 𝜆 marginalized over 𝑟𝐶 . (b) Jeffreys scale position-
ing showing moderate QM preference.

3.6 Proposed Experiments
Among five proposed next-generation experiments (Table 3), two
achieve sensitivity below the GRW reference point: space-based
matter-wave interferometry (MAQRO-type, minimum detectable
𝜆 = 2.81 × 10−23 s−1) and next-generation X-ray detectors (𝜆min =

1.00× 10−30 s−1). These could provide definitive tests of CSL across
the entire theoretically motivated parameter range.

4 DISCUSSION
Our analysis reveals that the empirical status of CSL is more con-
strained than often recognized. The combined exclusion from seven
experimental classes leaves only 4.9% of the surveyed parameter
space viable, concentrated at small 𝜆 and extreme 𝑟𝐶 values. All

Table 3: Proposed experiment sensitivity to CSL.

Experiment 𝜆min (s−1) Reaches GRW?

MAQRO (space) 2.81 × 10−23 Yes
Levitated nano. 1.26 × 10−12 No
Entangled osc. 1.26 × 10−14 No
Next-gen X-ray 1.00 × 10−30 Yes
Massive SG interf. 2.81 × 10−16 No

Figure 5: Sensitivity projections for proposed experiments
overlaid on the current combined exclusion bound.

standard theoretical reference points (GRW and both Adler bounds)
fall within excluded regions.

However, CSL cannot be declared empirically falsified. The ex-
clusion depends on the assumed white-noise spectrum; colored
extensions (dissipative CSL [2]) modify the frequency dependence
and can evade specific bounds. Furthermore, the theoretical param-
eter choices are motivated by phenomenological arguments rather
than fundamental principles, leaving open the possibility that the
true parameters lie in unconstrained regions.

The mass amplification analysis (Figure 6) confirms CSL’s core
prediction: collapse rates scale as𝑁 2 for point-like objects, ensuring
a sharp quantum-to-classical transition. Under the GRW model,
1-second collapse requires a mass of 1.73 × 10−19 kg (∼ 108 amu),
while the Adler model achieves this at 3.77 × 10−23 kg (∼ 104 amu).

The Bayesian analysis (𝐵 = 0.0285) provides quantitative support
for standard QM but falls short of decisive evidence (which would
require 𝐵 < 0.01). This inconclusive status aligns with Pearle’s
assessment [12].

5 CONCLUSION
We have presented a comprehensive computational assessment
of CSL’s empirical status. Our main findings are: (1) 95.1% of the
(𝜆, 𝑟𝐶 ) parameter space is experimentally excluded; (2) all standard
theoretical reference points are excluded; (3) the Bayesian evidence
moderately favors standard QM (𝐵 = 0.0285); (4) the Adler model’s
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Figure 6: CSL collapse rate and decoherence time vs. mass for
a 1 𝜇m superposition, showing the 𝑁 2 amplification mecha-
nism.

interference predictions (4.30 × 104 amu threshold) are within ex-
perimental reach; and (5) space-based interferometry and advanced
X-ray detectors could provide decisive tests.

The current empirical situation is: CSL with standard parameters
is excluded, but the model framework with arbitrary parameters
cannot yet be falsified. Achieving a decisive resolution requires
experiments sensitive to 𝜆 < 10−16 s−1 at 𝑟𝐶 = 10−7 m, a goal
within reach of proposed next-generation platforms.
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